有机化学 ›› 2023, Vol. 43 ›› Issue (11): 3997-4002.DOI: 10.6023/cjoc202304017 上一篇 下一篇
研究论文
收稿日期:
2023-04-13
修回日期:
2023-06-05
发布日期:
2023-06-13
基金资助:
Xuechun Zhao, Hui Fan, Yao Xu, Xiaoming Liao, Xiaoxiang Zhang()
Received:
2023-04-13
Revised:
2023-06-05
Published:
2023-06-13
Contact:
E-mail: Supported by:
文章分享
3-羟基-2-吲哚酮核心结构在合成化学和药物化学中都具有重要的意义. 发现了一种新的、有效的由邻炔基硝基芳烃制备3-羟基-2-吲哚酮的碱促进方法, 该反应可在不含过渡金属的条件下进行. 对各种邻炔基硝基芳烃进行测定, 并以中等至良好的产率获得所需的产物. 由三苯基膦引发的Wittig反应和随后的偶姻重排构成了主要的反应过程.
赵雪纯, 樊辉, 徐瑶, 廖小铭, 张小祥. PPh3-促进邻炔基硝基苯合成3-羟基-2-吲哚酮[J]. 有机化学, 2023, 43(11): 3997-4002.
Xuechun Zhao, Hui Fan, Yao Xu, Xiaoming Liao, Xiaoxiang Zhang. PPh3-Mediated Synthesis of 3-Hydroxy-2-oxindoles from o-Alkynylnitrobenzenes[J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3997-4002.
Entry | Base/equiv. | Solvent | PPh3/equiv. | T/℃ | Yieldb/% |
---|---|---|---|---|---|
1 | NaOH (1) | 1,4-Dioxane | 5 | 90 | 65 |
2 | NaOH (3) | 1,4-Dioxane | 5 | 90 | 75 |
3 | NaOH (5) | 1,4-Dioxane | 5 | 90 | 77 |
4 | NaOH (3) | CH3CN | 5 | 90 | 82 |
5 | NaOH (3) | DMF | 5 | 90 | N.D.c |
6 | NaOH (3) | DMSO | 5 | 90 | N.D.c |
7 | NaOH (3) | Toluene | 5 | 90 | 22 |
8 | NaOH (3) | EtOH | 5 | 90 | 52 |
9 | NaOH (3) | THF | 5 | 90 | 35 |
10 | Cs2CO3 (3) | CH3CN | 5 | 90 | 70 |
11 | K2CO3 (3) | CH3CN | 5 | 90 | 69 |
12 | DBU (3) | CH3CN | 5 | 90 | 43 |
13 | — | CH3CN | 5 | 90 | N.D.c |
14 | NaOH (3) | CH3CN | 3 | 90 | 61 |
15 | NaOH (3) | CH3CN | 5 | 50 | 45 |
16 | NaOH (3) | CH3CN | 5 | 90 | 13d |
17 | NaOH (3) | CH3CN | 5 | 90 | 76e |
Entry | Base/equiv. | Solvent | PPh3/equiv. | T/℃ | Yieldb/% |
---|---|---|---|---|---|
1 | NaOH (1) | 1,4-Dioxane | 5 | 90 | 65 |
2 | NaOH (3) | 1,4-Dioxane | 5 | 90 | 75 |
3 | NaOH (5) | 1,4-Dioxane | 5 | 90 | 77 |
4 | NaOH (3) | CH3CN | 5 | 90 | 82 |
5 | NaOH (3) | DMF | 5 | 90 | N.D.c |
6 | NaOH (3) | DMSO | 5 | 90 | N.D.c |
7 | NaOH (3) | Toluene | 5 | 90 | 22 |
8 | NaOH (3) | EtOH | 5 | 90 | 52 |
9 | NaOH (3) | THF | 5 | 90 | 35 |
10 | Cs2CO3 (3) | CH3CN | 5 | 90 | 70 |
11 | K2CO3 (3) | CH3CN | 5 | 90 | 69 |
12 | DBU (3) | CH3CN | 5 | 90 | 43 |
13 | — | CH3CN | 5 | 90 | N.D.c |
14 | NaOH (3) | CH3CN | 3 | 90 | 61 |
15 | NaOH (3) | CH3CN | 5 | 50 | 45 |
16 | NaOH (3) | CH3CN | 5 | 90 | 13d |
17 | NaOH (3) | CH3CN | 5 | 90 | 76e |
[1] |
(a) Lin, M. J.; Zhu, L.; Xia, J. J.; Yu, Y. H.; Chen, J. X.; Mao, Z. F.; Huang, X. L. Adv. Synth. Catal. 2018, 360, 2280.
doi: 10.1002/adsc.v360.12 pmid: 34110644 |
(b) Yu, Y. H.; Zhu, L.; Liao, Y.; Mao, Z. F.; Huang, X. L. Adv. Synth. Catal. 2016, 358, 1059.
doi: 10.1002/adsc.v358.7 pmid: 34110644 |
|
(c) Kenny, R. T.; Liu, F. Asian J. Org. Chem. 2022, 11.
pmid: 34110644 |
|
(d) Ma, L. Y.; Yu, Y. H.; Xin, L. T.; Zhu, L.; Xia, J. J.; Ou, P. C.; Huang, X. L. Adv. Synth. Catal. 2021, 363, 2573.
doi: 10.1002/adsc.v363.10 pmid: 34110644 |
|
(e) Day, D. P.; Chan, P. W. H. Adv. Synth. Catal. 2016, 358, 1368.
doi: 10.1002/adsc.v358.9 pmid: 34110644 |
|
(f) Jin, J. W.; Zhao, Y. C.; Sze, E. M. L.; Kothandaraman, P.; Chan, P. W. H. Adv. Synth. Catal. 2018, 360, 4744.
doi: 10.1002/adsc.v360.24 pmid: 34110644 |
|
(g) Zhao, Y. C.; Henry, S. A.; Jin, J. W.; Clarkson, G. J.; Chan, P. W. H. Asian J. Org. Chem. 2019, 8, 1029.
doi: 10.1002/ajoc.v8.7 pmid: 34110644 |
|
(h) Zheng, Y.; Qian, S. C.; Xu, P. C.; Ma, T. T.; Huang, S. L. Adv. Synth. Catal. 2022, 364, 3800.
doi: 10.1002/adsc.v364.22 pmid: 34110644 |
|
(i) Meng, X. T.; Xu, H. H.; Liu, R.; Zheng, Y.; Huang, S. L. Green Chem. 2022, 24, 4754.
doi: 10.1039/D2GC01129H pmid: 34110644 |
|
(j) Huang, Y.; Chen, D. F.; Zheng, Y.; Huang, S. L. Chemistryselect, 2022, 7.
pmid: 34110644 |
|
(k) Song, L. N.; Tian, X. H.; Han, C. Y.; Amanpur, M.; Rominger, F.; Hashmi, A. S. K. Org. Chem. Front. 2021, 8, 3314.
doi: 10.1039/D1QO00473E pmid: 34110644 |
|
(l) Greiner, L. C.; Inuki, S.; Arichi, N.; Oishi, S.; Suzuki, R.; Iwai, T.; Sawamura, M.; Hashmi, A. S. K.; Ohno, H. Chem.-Eur. J. 2021, 27, 12992.
doi: 10.1002/chem.202101824 pmid: 34110644 |
|
(m) Lustosa, D. M.; Hartmann, D.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Eur. J. Org. Chem. 2020, 2020, 1160.
doi: 10.1002/ejoc.v2020.9 pmid: 34110644 |
|
(n) Li, Z. Y.; Wang, N. N.; Liu, J.; Mei, H. B.; Soloshonok, V. A.; Han, J. L. Org. Lett. 2021, 23, 6941.
doi: 10.1021/acs.orglett.1c02538 pmid: 34110644 |
|
(o) Xie, L. G.; Shaaban, S.; Chen, X. Y.; Maulide, N. Angew. Chem., Int. Ed. 2016, 55, 12864.
doi: 10.1002/anie.v55.41 pmid: 34110644 |
|
(p) Liu, Q. S.; Wang, L. L.; Yue, H. L.; Li, J. S.; Luo, Z. D.; Wei, W. Green Chem. 2019, 21, 1609.
doi: 10.1039/C9GC00222G pmid: 34110644 |
|
(q) Sun, J. B.; Miao, T.; Li, P. H.; Wang, L. Chin. J. Org. Chem. 2021, 41, 3144. (in Chinese)
doi: 10.6023/cjoc202102025 pmid: 34110644 |
|
(孙佳兵, 苗涛, 李品华, 王磊, 有机化学, 2021, 41, 3144.)
doi: 10.6023/cjoc202102025 pmid: 34110644 |
|
[2] |
(a) Zheng, K.; Yin, C. K.; Liu, X. H.; Lin, L. L.; Feng, X. M. Angew. Chem. Int. Ed. 2011, 50, 2573.
doi: 10.1002/anie.201007145 pmid: 21370340 |
(b) Pastor, M.; Vayer, M.; Weinstabl, H.; Maulide, N. J. Org. Chem. 2022, 87, 606.
doi: 10.1021/acs.joc.1c02616 pmid: 21370340 |
|
(c) Gambacorta, G.; Apperley, D. C.; Baxendale, I. R. Molecules 2020, 25, 2160.
doi: 10.3390/molecules25092160 pmid: 21370340 |
|
(d) El-Hussieny, M.; El-Sayed, N. F.; Fouad, M. A.; Ewies, E. F. Bioorg. Chem. 2021, 117, 105421.
doi: 10.1016/j.bioorg.2021.105421 pmid: 21370340 |
|
(e) Han, J. S.; Zhang, J. L.; Zhang, W. Q.; Gao, Z. W.; Xu, L. W.; Jian, Y. J. J. Org. Chem. 2019, 84, 7642.
doi: 10.1021/acs.joc.9b00441 pmid: 21370340 |
|
[3] |
(a) Mo, Y. Z.; Zhao, J. P.; Chen, W. P.; Wang, Q. F. Res. Chem. Intermediat. 2015, 41, 5869.
doi: 10.1007/s11164-014-1707-5 pmid: 30300974 |
(b) Griffiths, B. M.; Burl, J. D.; Wang, X. Synlett 2016, 27, 2039.
doi: 10.1055/s-0035-1561638 pmid: 30300974 |
|
(c) Ori, M.; Toda, N.; Takami, K.; Tago, K.; Kogen, H. Tetrahedron 2005, 61, 2075.
doi: 10.1016/j.tet.2004.12.041 pmid: 30300974 |
|
(d) Boominathan, S. S. K.; Wang, J. J. Chem.-Eur. J. 2015, 21, 17044.
doi: 10.1002/chem.201503210 pmid: 30300974 |
|
(e) Singh, S.; Gajulapati, V.; Gajulapati, K.; Goo, J. I.; Park, Y. H.; Jung, H. Y.; Lee, S. Y.; Choi, J. H.; Kim, Y. K.; Lee, K.; Heo, T. H.; Choi, Y. Bioorg. Med. Chem. Lett. 2016, 26, 1282.
doi: 10.1016/j.bmcl.2016.01.016 pmid: 30300974 |
|
(f)Wang, W.; Cencic,R.; L. Whitesell, J. Pelletier, J.; Porco, J. A. Wang, W.; Cencic, R.; L. Whitesell, J. Pelletier, J.; Porco, J. A. Chem.-Eur. J. 2016, 22, 12006
doi: 10.1002/chem.v22.34 pmid: 30300974 |
|
(h) Franke, J.; Kim, J.; Hamilton, J. P.; Zhao, D. Y.; Pham, G. M., Wiegert-Rininger, K.; Crisovan, E.; Newton, L.; Vaillancourt, B.; Tatsis, E.; Buell, C. R.; O'Connor, S. E. ChemBioChem 2019, 20, 83.
doi: 10.1002/cbic.201800592 pmid: 30300974 |
|
(i) Khuzhaev, V. U.; Zhalolov, I.; Turgunov, K. K.; Tashkhodzhaev, B.; Levkovich, M. G.; Aripova, S. F.; Shashkov, A. S. Chem. Nat. Compd. 2004, 40, 269.
doi: 10.1023/B:CONC.0000039139.30391.2c pmid: 30300974 |
|
[4] |
(a) De Silva, N. H.; Dahdah, A.; Blanch, E. W.; Huegel, H. M.; Maniam, S. Eur. J. Med. Chem. 2022, 240.
|
(b) Kinthada, L. K.; Ghosh, S.; Babu, K. N.; Sharique, M.; Biswas, S.; Bisai, A. Org. Biomol. Chem. 2014, 12, 8152.
doi: 10.1039/C4OB01264J |
|
(c) Seo, D. Y.; Min, B. K.; Roh, H. J.; Kim, J. N. B. Korean Chem. Soc. 2017, 38, 1231.
doi: 10.1002/bkcs.2017.38.issue-10 |
|
(d) Chandran, R.; Pise, A.; Shah, S. K.; Rahul, D.; Baluni, A.; Tiwari, K. N. Synth. Commun. 2021, 51, 245.
doi: 10.1080/00397911.2020.1822409 |
|
(e) Sohail, M.; Tanaka, F. Chem.-Eur. J. 2020, 26, 222.
doi: 10.1002/chem.v26.1 |
|
[5] |
(a) Kamano, Y.; Zhang, H. P.; Ichihara, Y.; Kizu, H.; Komiyama, K.; Pettit, G. R. Tetrahedron Lett. 1995, 36, 2783.
|
(b) Rasmussen, H. B.; MacLeod, J. K. J. Nat. Prod. 1997, 60, 1152.
doi: 10.1021/np970246q |
|
(c) Suchy, M.; Kutschy, P.; Monde, K.; Goto, H.; Harada, N.; Takasugi, M.; Dzurilla, M.; Balentova, E. J. Org. Chem. 2001, 66, 3940.
doi: 10.1021/jo0155052 |
|
(d) Tang, Y. Q.; Sattler, I.; Thiericke, R.; Grabley, S.; Feng, X. Z. Eur. J. Org. Chem. 2001, 2001, 261.
doi: 10.1002/(ISSN)1099-0690 |
|
[6] |
(a) Kumar, G. S.; Ramesh, P.; Kumar, A. S.; Swetha, A.; Meshram, H. M. Tetrahedron Lett. 2013, 54, 5048.
doi: 10.1016/j.tetlet.2013.07.027 |
(b) Zhou, Z. Q.; Xu, Y.; Zhu, B. Y.; Li, P.; Hu, G. W.; Yang, F.; Xu, S. J.; Zhang, X. X. New J. Chem. 2020, 44, 20303.
doi: 10.1039/D0NJ04588H |
|
(c) Liu, D. Y.; Zhao, G. W.; Xiang, L. Eur. J. Org. Chem. 2010, 2010, 3975.
doi: 10.1002/ejoc.v2010:21 |
|
(d) Wang, D. S.; Chen, Q. A.; Lu, S. M.; Zhou, Y. G. Chem. Rev. 2012, 112, 2557.
doi: 10.1021/cr200328h |
|
(e) Repka, L. M.; Reisman, S. E. J. Org. Chem. 2013, 78, 12314.
doi: 10.1021/jo4017953 |
|
(f) Zhuo, C. X.; Zheng, C.; You, S. L. Acc. Chem. Res. 2014, 47, 2558.
doi: 10.1021/ar500167f |
|
(g) Zi, W. W.; Zuo, Z. W.; Ma, D. W. Acc. Chem. Res. 2015, 48, 702.
doi: 10.1021/ar5004303 |
|
(h) Roche, S. P.; Tendoung, J. J. Y.; Treguier, B. Tetrahedron 2015, 71, 3549.
doi: 10.1016/j.tet.2014.06.054 |
|
(i) Wang, Y. S.; Xie, F. K.; Lin, B.; Cheng, M. S.; Liu, Y. X. Chem.- Eur. J. 2018, 24, 14302.
doi: 10.1002/chem.v24.54 |
|
(j) Huang, G. H.; Yin, B. L. Adv. Synth. Catal. 2019, 361, 405.
doi: 10.1002/adsc.v361.3 |
|
(k) Silva, T. S.; Rodrigues, M. T.; Santos, H.; Zeoly, L. A.; Almeida, W. P.; Barcelos, R. C.; Gomes, R. C.; Fernandes, F. S.; Coelho, F. Tetrahedron 2019, 75, 2063.
doi: 10.1016/j.tet.2019.02.006 |
|
[7] |
(a) Peris, G.; Vedejs, E. J. Org. Chem. 2015, 80, 3050.
doi: 10.1021/jo502939a pmid: 26695735 |
(b) Nakazaki, A.; Mori, A.; Kobayashi, S.; Nishikawa, T. Tetrahedron Lett. 2012, 53, 7131.
doi: 10.1016/j.tetlet.2012.10.092 pmid: 26695735 |
|
(c) Ulikowski, A.; Furman, B. Org. Lett. 2016, 18, 149.
doi: 10.1021/acs.orglett.5b03449 pmid: 26695735 |
|
(d) Tokunaga, T.; Hume, W. E.; Nagamine, J.; Kawamura, T.; Taiji, M.; Nagata, R. Bioorg. Med. Chem. Lett. 2005, 15, 1789.
doi: 10.1016/j.bmcl.2005.02.042 pmid: 26695735 |
|
[8] |
(a) Nasim, A.; Thomas, G. T.; Ovens, J. S.; Newman, S. G. Org. Lett. 2022, 24, 7232.
doi: 10.1021/acs.orglett.2c03042 |
(b) Kise, N.; Sasaki, K.; Sakurai, T. Tetrahedron, 2014, 70, 9668.
doi: 10.1016/j.tet.2014.10.071 |
|
(c) Mandal, T.; Jana, S.; Dash, J. Eur. J. Org. Chem. 2017, 2017, 4972.
doi: 10.1002/ejoc.v2017.33 |
|
(d) Reddy, G. S.; Hossain, K. A.; Kumar, J. S.; Thirupataiah, B.; Edwin, R. K.; Giliyaru, V. B.; Hariharapura, R. C.; Shenoy, G. G.; Misra, P.; Pal, M. RSC Adv. 2020, 10, 289.
doi: 10.1039/C9RA09236F |
|
[9] |
(a) Kaur, J.; Kumar, A.; Chimni, S. S., Tetrahedron Lett. 2014, 55, 2138.
doi: 10.1016/j.tetlet.2014.02.054 |
(b) Hanhan, N. V.; Sahin, A. H.; Chang, T. W.; Fettinger, J. C.; Franz, A. K. Angew. Chem. Int. Ed. 2010, 49, 744.
|
|
(c) Ramachary, D. B.; Reddy, G. B.; Mondal, R. Tetrahedron Lett. 2007, 48, 7618.
doi: 10.1016/j.tetlet.2007.08.129 |
|
(d) Nicolaou, K. C.; Rao, P. B.; Hao, J. L.; Reddy, M. V.; Rassias, G.; Huang, X. H.; Chen, D. Y. K.; Snyder, S. A. Angew. Chem., Int. Ed. 2003, 42, 1753.
doi: 10.1002/anie.v42:15 |
|
(e) Zhang, J. W.; Wu, H.; Zhang, W. X.; Wang, L. M.; Jin, Y. Chin. J. Org. Chem. 2021, 41, 1187. (in Chinese)
doi: 10.6023/cjoc202009023 |
|
(张俊伟, 吴昊, 张伟鑫, 王黎明, 金瑛, 有机化学, 2021, 41, 1187.)
doi: 10.6023/cjoc202009023 |
|
[10] |
(a) Wei, W. T.; Zhu, W. M.; Shao, Q. J.; Bao, W. H.; Chen, W. T.; Chen, G. P.; Luo, Y. J.; Liang, H. Z. ACS Sustainable Chem. Eng. 2018, 6, 8029.
doi: 10.1021/acssuschemeng.8b01472 |
(b) Ohmatsu, K.; Ando, Y.; Ooi, T. Synlett 2017, 28, 1291.
doi: 10.1055/s-0036-1558958 |
|
(c) Ying, W. W.; Zhu, W. M.; Gao, Z. H.; Liang, H. Z.; Wei, W. T. Synlett 2018, 29, 663.
doi: 10.1055/s-0036-1591520 |
|
[11] |
(a) Shin, I.; Ramgren, S. D.; Krische, M. J. Tetrahedron 2015, 71, 5776.
doi: 10.1016/j.tet.2015.05.085 pmid: 21957865 |
(b) Shirai, T.; Yamamoto, Y. Organometallics 2015, 34, 3459.
doi: 10.1021/om501260w pmid: 21957865 |
|
(c) Shirai, T.; Ito, H.; Yamamoto, Y. Angew. Chem., Int. Ed. 2014, 53, 2658.
doi: 10.1002/anie.v53.10 pmid: 21957865 |
|
(d) He, J. Q.; Chen, C.; Yu, W. B.; Liu, R. R.; Xu, M.; Li, Y. J.; Gao, J. R.; Jia, Y. X. Tetrahedron Lett. 2014, 55, 2805.
doi: 10.1016/j.tetlet.2014.03.069 pmid: 21957865 |
|
(e) Li, Y.; Zhu, D. X.; Xu, M. H. Chem. Commun. 2013, 49, 11659.
doi: 10.1039/c3cc47927g pmid: 21957865 |
|
(f) Hu, J. X.; Wu, H.; Li, C. Y.; Sheng, W. J.; Jia, Y. X.; Gao, J. R. Chem.-Eur. J. 2011, 17, 5234.
doi: 10.1002/chem.v17.19 pmid: 21957865 |
|
(g) Gorokhovik, I.; Neuville, L.; Zhu, J. P. Org. Lett. 2011, 13, 5536.
doi: 10.1021/ol202263a pmid: 21957865 |
|
(h) Jia, Y. X.; Katayev, D.; Kundig, E. P. Chem. Commun. 2010, 46, 130.
doi: 10.1039/B917958E pmid: 21957865 |
|
[12] |
Zhao, Y. W.; Zhu, H. R.; Sung, S. Y.; Wink, D. J.; Zadrozny, J. M.; Driver, T. G. Angew. Chem., Int. Ed. 2021, 60, 19207.
doi: 10.1002/anie.v60.35 |
[13] |
Aksenov, A. V.; Aleksandrova, E. V.; Aksenov, D. A.; Aksenova, A. A.; Aksenov, N. A.; Nobi, M. A.; Rubin, M. J. Org. Chem. 2022, 87, 1434.
doi: 10.1021/acs.joc.1c02753 |
[14] |
(a) Fan, H.; Xu, Y.; Yang, F.; Xu, S. J.; Zhao, X. C.; Zhang, X. X. Adv. Synth. Catal. 2022, 364, 2358.
doi: 10.1002/adsc.v364.14 |
(b) Xu, Y.; Fan, H.; Yang, F.; Xu, S. J.; Zhao, X. C.; Liao, X. M.; Zhang, X. X. J. Org. Chem. 2023, 88, 2801.
doi: 10.1021/acs.joc.2c02434 |
|
[15] |
Mei, H.; Wang, N.; Li, Z.; Han, J. Org. Lett. 2022, 24, 2258.
doi: 10.1021/acs.orglett.2c00738 |
[16] |
Wetzel, A.; Gagosz, F. Angew. Chem., Int. Ed. 2011, 50, 7354.
doi: 10.1002/anie.v50.32 |
[17] |
Bumagin, N. A.; Sukhomlinova, L. I.; Luzikova, E. V.; Tolstaya, T. P.; Beletskaya, I. P. Tetrahedron Lett. 1996, 37, 897.
doi: 10.1016/0040-4039(95)02255-4 |
[18] |
Xiao, Z. K.; Yin, H. Y.; Shao, L. X. Org. Lett. 2013, 15, 1254.
doi: 10.1021/ol400186b |
[19] |
Chaudhari, M. B.; Sutar, Y.; Malpathak, S.; Hazra, A.; Gnana- prakasam, B. Org. Lett. 2017, 19, 3628.
doi: 10.1021/acs.orglett.7b01616 |
[1] | 解海, 张雅丽, 秦秀婷, 谷永新. 利用串联的Staudinger/aza-Wittig/芳构化反应合成1,2,4-三取代咪唑衍生物[J]. 有机化学, 2024, 44(2): 525-532. |
[2] | 廖楚婕, 阮洪瑶, 姜峻峰, 罗伦, 胡扬根. 3-芳基-2-亚胺-苯并[e]-1,3-噁嗪-4-醇衍生物的合成及活性评价[J]. 有机化学, 2023, 43(2): 763-770. |
[3] | 赵龙, 阳茂林, 陈皓冉, 丁明武. 三组分一锅法合成3,4-二氢喹唑啉衍生物[J]. 有机化学, 2022, 42(11): 3740-3746. |
[4] | 刘金妮, 谢益碧, 阳青青, 黄年玉, 王龙. 基于原位捕获胺的Ugi四组分反应及其后修饰串联环化反应:“一锅法”合成六元、七元杂环化合物[J]. 有机化学, 2021, 41(6): 2374-2383. |
[5] | 史鸿燕, 钟莹, 赵志刚. 以森田-贝里斯-希尔曼(MBH)碳酸酯为原料合成多取代1,4-二氢喹啉类衍生物[J]. 有机化学, 2021, 41(2): 677-687. |
[6] | 蔡卫, 黄有. 有机膦氧化还原催化反应研究进展[J]. 有机化学, 2021, 41(10): 3903-3913. |
[7] | 张静静, 姚明, 李立, 桑大永, 熊航行, 刘生鹏. 白藜芦醇、白皮杉醇和赤松素的合成[J]. 有机化学, 2020, 40(4): 1062-1067. |
[8] | 武静, 孔晗晗, 丁明武. 12H,14H-喹唑啉并[3,4-a]-3,1-苯并噁嗪的合成[J]. 有机化学, 2016, 36(7): 1662-1667. |
[9] | 邹雯, 贺峥嵘, 贺峥杰. 一种简便合成多取代呋喃的新方法[J]. 有机化学, 2015, 35(8): 1739-1745. |
[10] | 王红梅, 郭树兵, 胡扬根, 曾小华, 杨光义. 新型5,6,7,8-四氢苯并噻吩并嘧啶酮衍生物的合成与抗肿瘤活性研究[J]. 有机化学, 2015, 35(5): 1075-1080. |
[11] | 王雅珍, 朱星星, 林伟, 郑纯智, 张继振. 3-亚甲基异苯并呋喃-1(3H)-酮及其衍生物合成新方法[J]. 有机化学, 2015, 35(11): 2412-2419. |
[12] | 郑纯智, 朱星星, 赵德建, 贾洪斌, 张继振. 3-亚烷基(亚芳基)异苯并呋喃-1(3H)-酮及其衍生物的合成研究[J]. 有机化学, 2014, 34(9): 1881-1888. |
[13] | 杨晓梅, 张玉顺, 姚赟, 陶云海. 桃小食心虫性信息素——(Z)-7-二十碳烯-11-酮的简便合成[J]. 有机化学, 2014, 34(7): 1458-1461. |
[14] | 杨绪红, 王翔, 吴鸣虎. 2-芳氨基-3-羟乙基喹唑啉-4(3H)-酮衍生物的合成及生物活性[J]. 有机化学, 2014, 34(5): 1015-1020. |
[15] | 徐四龙, 贺峥杰. 烯丙基磷叶立德与羰基化合物的Vinylogous类型有机反应研究进展[J]. 有机化学, 2014, 34(12): 2438-2447. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||