综述与进展

氮杂环磷氢试剂的氢转移活性研究进展

  • 张雨杉 ,
  • 桓臻 ,
  • 杨金东 ,
  • 程津培
展开
  • a 清华大学化学系 基础分子科学中心 北京 100084
    b 南开大学化学学院 元素有机化学国家重点实验室 天津 300071
    c 物质绿色创造与制造海河实验室 天津 300192
共同第一作者

收稿日期: 2023-04-19

  修回日期: 2023-05-22

  网络出版日期: 2023-06-26

基金资助

国家自然科学基金(22222106); 国家自然科学基金(21973052); 国家自然科学基金(22193011); 国家自然科学基金(21933008); 物质绿色创造与制造海河实验室资助项目.

Recent Advances in Hydrogen Transfer Reactivities of N-Heterocyclic Phosphines

  • Yushan Zhang ,
  • Zhen Huan ,
  • Jindong Yang ,
  • Jinpei Cheng
Expand
  • a Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084
    b State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071
    c Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192
These authors contributed equally to this work

Received date: 2023-04-19

  Revised date: 2023-05-22

  Online published: 2023-06-26

Supported by

National Natural Science Foundation of China(22222106); National Natural Science Foundation of China(21973052); National Natural Science Foundation of China(22193011); National Natural Science Foundation of China(21933008); Haihe Laboratory of Sustainable Chemical Transformations

摘要

氮杂环磷氢(NHP-H)独特的杂环骨架赋予了其优异的负氢还原能力. 过去十年间, NHP-H被广泛用于极性不饱和底物的负氢还原中. 近年来, 随着自由基化学的兴起, 其在催化自由基还原领域崭露头角, 方兴未艾. 这种新的NHP-H反应模式有望突破负氢机理对底物极性的限制, 可大大拓展底物的适用范围. 简要总结了NHP-H在负氢还原和自由基还原中的合成应用, 重点关注其自由基反应相关的性质, 包括NHP自由基及其前体的结构、性质、合成应用等.

本文引用格式

张雨杉 , 桓臻 , 杨金东 , 程津培 . 氮杂环磷氢试剂的氢转移活性研究进展[J]. 有机化学, 2023 , 43(11) : 3806 -3825 . DOI: 10.6023/cjoc202304023

Abstract

The unique heterocyclic skeletons of N-heterocyclic phosphines (NHP-H) endow them with excellent hydridic reactivity, which have enabled a great array of catalytic hydrogenations of unsaturated substrates in the past decade. Recently, applications of NHP-H in radical reductions, especially in a catalytic fashion, have emerged as a promising forefront area. This new reaction pattern, distinctive from but complementary to the well-established hydride pathway, can greatly expand the reaction scope to σ-bond scission. Herein, some representative examples of synthetic applications of NHP-H in both hydridic and radical reductions with emphasis on their radical reactivity are briefly summarized, including the structural and property studies of NHP radicals and their precursors as well as their applications in radical hydrogenations.

参考文献

[1]
Ai, W.; Zhong, R.; Liu, X.; Liu, Q. Chem. Rev. 2019, 119, 2876.
[2]
Jordan, A. J.; Lalic, G.; Sadighi, J. P. Chem. Rev. 2016, 116, 8318.
[3]
Roy, M. M. D.; Oma?a, A. A.; Wilson, A. S. S.; Hill, M. S.; Aldridge, S.; Rivard, E. Chem. Rev. 2021, 121, 12784.
[4]
McGrady, G. S.; Guilera, G. Chem. Soc. Rev. 2003, 32, 383.
[5]
Aldridge, S.; Downs, A. J. Chem. Rev. 2001, 101, 3305.
[6]
Ilic, S.; Alherz, A.; Musgrave, C. B.; Glusac, K. D. Chem. Soc. Rev. 2018, 47, 2809.
[7]
Mayr, H.; Patz, M. Angew. Chem., Int. Ed. 1994, 33, 938.
[8]
Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H. J. Am. Chem. Soc. 2001, 123, 9500.
[9]
Wiedner, E. S.; Chambers, M. B.; Pitman, C. L.; Bullock, R. M.; Miller, A. J.; Appel, A. M. Chem. Rev. 2016, 116, 8655.
[10]
Brereton, K. R.; Smith, N. E.; Hazari, N.; Miller, A. J. M. Chem. Soc. Rev. 2020, 49, 7929.
[11]
Heiden, Z. M.; Lathem, A. P. Organometallics 2015, 34, 1818.
[12]
Sarker, N.; Bruno, J. W. J. Am. Chem. Soc. 1999, 121, 2174.
[13]
Ciancanelli, R.; Noll, B. C.; DuBois, D. L.; DuBois, M. R. J. Am. Chem. Soc. 2002, 124, 2984.
[14]
Estes, D. P.; Vannucci, A. K.; Hall, A. R.; Lichtenberger, D. L.; Norton, J. R. Organometallics 2011, 30, 3444.
[15]
Hu, Y.; Norton, J. R. J. Am. Chem. Soc. 2014, 136, 5938.
[16]
Horn, M.; Schappele, L. H.; Lang-Wittkowski, G.; Mayr, H.; Ofial, A. R. Chem.-Eur. J. 2013, 19, 249.
[17]
Longeau, A.; Knochel, P. Tetrahedron Lett. 1996, 37, 6099.
[18]
Sadow, A. D.; Togni, A. J. Am. Chem. Soc. 2005, 127, 17012.
[19]
Blum, M.; Kappler, J.; Schlindwein, S. H.; Nieger, M.; Gudat, D. Dalton Trans. 2018, 47, 112.
[20]
Leca, D.; Fensterbank, L.; Lacote, E.; Malacria, M. Chem. Soc. Rev. 2005, 34, 858.
[21]
Marque, S.; Tordo, P. Top. Curr. Chem. 2005, 250, 43.
[22]
Gao, Y.; Tang, G.; Zhao, Y. Chin. J. Org. Chem. 2018, 38, 62. (in Chinese)
[22]
(高玉珍, 唐果, 赵玉芬, 有机化学, 2018, 38, 62.)
[23]
Bezombes, J.-P.; Carré, F.; Chuit, C.; Corriu, R. J. P.; Mehdi, A.; Reyé, C. J. Org. Chem. 1997, 535, 81.
[24]
Carré, F.; Chuit, C.; Corriu, R. J. P.; Mehdi, A.; Reyé, C. J. Org. Chem. 1997, 529, 59.
[25]
Gudat, D.; Haghverdi, A.; Nieger, M. Angew. Chem., Int. Ed. 2000, 39, 3084.
[26]
Fleming, S.; Lupton, M. K.; Jekot, K. Inorg. Chem. 1972, 11, 2534.
[27]
Maryanoff, B. E.; Hutchins, R. O. J. Org. Chem 1972, 37, 3475.
[28]
Karaghiosoff, K.; Majoral, J. P.; Meriem, A.; Navech, J.; Schmid- peter, A. Tetrahedron Lett. 1983, 24, 2137.
[29]
Kibardin, A. M.; Mikhailov, Y. B.; Gryaznova, T. V.; Pudovik, A. N. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1986, 35, 878.
[30]
Jennings, W. B.; Randall, D.; Worley, S. D.; Hargis, J. H. J. Chem. Soc., Perkin Trans. II 1981, 1411.
[31]
Dube, J. W.; Farrar, G. J.; Norton, E. L.; Szekely, K. L. S.; Cooper, B. F. T.; Macdonald, C. L. B. Organometallics 2009, 28, 4377.
[32]
Burck, S.; Gudat, D.; Nieger, M.; Du Mont, W.-W. J. Am. Chem. Soc. 2006, 128, 3946.
[33]
Alkhater, M. F.; Alherz, A. W.; Musgrave, C. B. Phys. Chem. Chem. Phys. 2021, 23, 17794.
[34]
Zhang, J.; Yang, J.-D.; Cheng, J.-P. Angew. Chem., Int. Ed. 2019, 58, 5983.
[35]
Liu, L. L.; Wu, Y.; Chen, P.; Chan, C.; Xu, J.; Zhu, J.; Zhao, Y. Org. Chem. Front. 2016, 3, 423.
[36]
Zhang, J.; Yang, J.-D.; Cheng, J.-P. Chem. Sci. 2020, 11, 3672.
[37]
Chong, C. C.; Hirao, H.; Kinjo, R. Angew. Chem., Int. Ed. 2014, 53, 3342.
[38]
Waterman, R. Organometallics 2013, 32, 7249.
[39]
Chong, C. C.; Hirao, H.; Kinjo, R. Angew. Chem., Int. Ed. 2015, 54, 190.
[40]
Edge, R.; Less, R. J.; McInnes, E. J. L.; Müther, K.; Naseri, V.; Rawson, J. M.; Wright, D. S. Chem. Commun. 2009, 1691.
[41]
Gudat, D. Dalton Trans. 2016, 45, 5896.
[42]
Ould, D. M. C.; Melen, R. L. Chem.-Eur. J. 2020, 26, 9835.
[43]
Speed, A. W. H. Chem. Soc. Rev. 2020, 49, 8335.
[44]
Zhang, J.; Yang, J.-D.; Cheng, J.-P. Natl. Sci. Rev. 2021, 8, nwaa253.
[45]
Zhang, Y.-S.; Huan, Z.; Yang, J.-D.; Cheng, J.-P. Chem. Commun. 2022, 58, 12528.
[46]
Ould, D. M. C.; Tran, T. T. P.; Rawson, J. M.; Melen, R. L. Dalton Trans. 2019, 48, 16922.
[47]
Chong, C. C.; Kinjo, R. Angew. Chem., Int. Ed. 2015, 54, 12116.
[48]
Lu, Y.; Gao, Z. H.; Chen, X. Y.; Guo, J.; Liu, Z.; Dang, Y.; Ye, S.; Wang, Z. X. Chem. Sci. 2017, 8, 7637.
[49]
Adams, M. R.; Tien, C. H.; Huchenski, B. S. N.; Ferguson, M. J.; Speed, A. W. H. Angew. Chem., Int. Ed. 2017, 56, 6268.
[50]
Chong, C. C.; Rao, B.; Kinjo, R. ACS Catal. 2017, 7, 5814.
[51]
Reed, J. H.; Cramer, N. ChemCatChem 2020, 12, 4262.
[52]
Reed, J. H.; Donets, P. A.; Miaskiewicz, S.; Cramer, N. Angew. Chem., Int. Ed. 2019, 58, 8893.
[53]
Zhang, G.; Cramer, N. Angew. Chem., Int. Ed. 2023, 62, e202301076.
[54]
Miaskiewicz, S.; Reed, J. H.; Donets, P. A.; Oliveira, C. C.; Cramer, N. Angew. Chem., Int. Ed. 2018, 57, 4039.
[55]
Lin, Y. C.; Hatzakis, E.; McCarthy, S. M.; Reichl, K. D.; Lai, T. Y.; Yennawar, H. P.; Radosevich, A. T. J. Am. Chem. Soc. 2017, 139, 6008.
[56]
Adams, M. R.; Tien, C. H.; McDonald, R.; Speed, A. W. H. Angew. Chem., Int. Ed. 2017, 56, 16660.
[57]
Rao, B.; Chong, C. C.; Kinjo, R. J. Am. Chem. Soc. 2018, 140, 652.
[58]
Lundrigan, T.; Welsh, E. N.; Hynes, T.; Tien, C. H.; Adams, M. R.; Roy, K. R.; Robertson, K. N.; Speed, A. W. H. J. Am. Chem. Soc. 2019, 141, 14083.
[59]
Lundrigan, T.; Tien, C. H.; Robertson, K. N.; Speed, A. W. H. Chem. Commun. 2020, 56, 8027.
[60]
Hynes, T.; Welsh, E. N.; McDonald, R.; Ferguson, M. J.; Speed, A. W. H. Organometallics 2018, 37, 841.
[61]
Zhang, J.; Yang, J.-D.; Cheng, J.-P. Nat. Commun. 2021, 12, 2835.
[62]
Zhang, J.; Zhao, X.; Yang, J.-D.; Cheng, J.-P. J. Org. Chem. 2022, 87, 294.
[63]
Puntigam, O.; F?rster, D.; Giffin, N. A.; Burck, S.; Bender, J.; Ehret, F.; Hendsbee, A. D.; Nieger, M.; Masuda, J. D.; Gudat, D. Eur. J. Inorg. Chem. 2013, 2041.
[64]
Burck, S.; Gudat, D.; Nieger, M. Angew. Chem., Int. Ed. 2004, 43, 4801.
[65]
Burck, S.; G?tz, K.; Kaupp, M.; Nieger, M.; Weber, J.; Schmedt auf der Günne, J.; Gudat, D. J. Am. Chem. Soc. 2009, 131, 10763.
[66]
Ma, M.; Shen, L.; Wang, H.; Zhao, Y.; Wu, B.; Yang, X.-J. Organometallics 2020, 39, 1440.
[67]
Abakumov, G. A.; Druzhkov, N. O.; Kazakov, G. G.; Fukin, G. K.; Rumyantsev, R. V.; Cherkasov, V. K. Dokl. Chem. 2019, 489, 279.
[68]
F?rster, D.; Dilger, H.; Ehret, F.; Nieger, M.; Gudat, D. Eur. J. Inorg. Chem. 2012, 3989.
[69]
Blum, M.; Puntigam, O.; Plebst, S.; Ehret, F.; Bender, J.; Nieger, M.; Gudat, D. Dalton Trans. 2016, 45, 1987.
[70]
Giffin, N. A.; Hendsbee, A. D.; Masuda, J. D. Dalton Trans. 2016, 45, 12636.
[71]
Zhang, J.; Yang, J.-D.; Cheng, J.-P. Chem. Sci. 2020, 11, 4786.
[72]
Huchenski, B. S. N.; Robertson, K. N.; Speed, A. W. H. Eur. J. Org. Chem. 2020, 5140.
[73]
Zhang, J.; Yang, J.-D.; Cheng, J.-P. Chem. Sci. 2020, 11, 8476.
[74]
Klett, J.; Wozniak, L.; Cramer, N. Angew. Chem., Int. Ed. 2022, 134, e202202306.
[75]
Riley, R. D.; Huchenski, B. S. N.; Bamford, K. L.; Speed, A. W. H. Angew. Chem., Int. Ed. 2022, 134, e202204088.
文章导航

/