有机化学 ›› 2023, Vol. 43 ›› Issue (11): 3806-3825.DOI: 10.6023/cjoc202304023 上一篇 下一篇
综述与进展
张雨杉a†, 桓臻a†, 杨金东a,*(), 程津培a,b,c
收稿日期:
2023-04-19
修回日期:
2023-05-22
发布日期:
2023-06-26
作者简介:
基金资助:
Yushan Zhanga†, Zhen Huana†, Jindong Yanga(), Jinpei Chenga,b,c
Received:
2023-04-19
Revised:
2023-05-22
Published:
2023-06-26
Contact:
E-mail: About author:
Supported by:
文章分享
氮杂环磷氢(NHP-H)独特的杂环骨架赋予了其优异的负氢还原能力. 过去十年间, NHP-H被广泛用于极性不饱和底物的负氢还原中. 近年来, 随着自由基化学的兴起, 其在催化自由基还原领域崭露头角, 方兴未艾. 这种新的NHP-H反应模式有望突破负氢机理对底物极性的限制, 可大大拓展底物的适用范围. 简要总结了NHP-H在负氢还原和自由基还原中的合成应用, 重点关注其自由基反应相关的性质, 包括NHP自由基及其前体的结构、性质、合成应用等.
张雨杉, 桓臻, 杨金东, 程津培. 氮杂环磷氢试剂的氢转移活性研究进展[J]. 有机化学, 2023, 43(11): 3806-3825.
Yushan Zhang, Zhen Huan, Jindong Yang, Jinpei Cheng. Recent Advances in Hydrogen Transfer Reactivities of N-Heterocyclic Phosphines[J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3806-3825.
Hydride donor | Thermodynamic hydricity | Kinetic hydricity | |||
---|---|---|---|---|---|
ΔGH–/(kJ•mol–1) | Solvent | N | Solvent | ||
NaBH4 | 211.0a | MeCN | 14.74 | DMSO | |
Me3N-BH3 | 306.0a | MeCN | 7.97 | DCM | |
PhSiH3 | 403.1a | MeCN | 0.06 | DCM | |
Hantzsch ester | 257.4 | MeCN | 9.00 | DCM | |
HMo(CO)3Cp* | 268.0 | MeCN | 4.3 | DCM | |
HW(CO)3Cp | 285.0 | MeCN | 1.7 | DCM |
Hydride donor | Thermodynamic hydricity | Kinetic hydricity | |||
---|---|---|---|---|---|
ΔGH–/(kJ•mol–1) | Solvent | N | Solvent | ||
NaBH4 | 211.0a | MeCN | 14.74 | DMSO | |
Me3N-BH3 | 306.0a | MeCN | 7.97 | DCM | |
PhSiH3 | 403.1a | MeCN | 0.06 | DCM | |
Hantzsch ester | 257.4 | MeCN | 9.00 | DCM | |
HMo(CO)3Cp* | 268.0 | MeCN | 4.3 | DCM | |
HW(CO)3Cp | 285.0 | MeCN | 1.7 | DCM |
Hydride donor | Thermodynamic hydricity | Kinetic hydricity | |||
---|---|---|---|---|---|
ΔGH–/(kJ•mol–1) | Solvent | N | Solvent | ||
NHP-H1 | 142.7a | MeCN | 25.54 | MeCN | |
NHP-H2 | 173.3a | MeCN | 17.68 | MeCN | |
NHP-H3 | 177.5a | MeCN | 19.85 | MeCN | |
NHP-H4 | 186.3a | MeCN | 20.93 | MeCN | |
NHP-H6 | 159.5a | MeCN | — | — | |
NHP-H7 | 198.0a | MeCN | 18.74 | MeCN | |
NHP-H8 | 204.3a | MeCN | 13.46 | MeCN | |
NHP-H9 | 260.4 | MeCN | 8.46 | MeCN |
Hydride donor | Thermodynamic hydricity | Kinetic hydricity | |||
---|---|---|---|---|---|
ΔGH–/(kJ•mol–1) | Solvent | N | Solvent | ||
NHP-H1 | 142.7a | MeCN | 25.54 | MeCN | |
NHP-H2 | 173.3a | MeCN | 17.68 | MeCN | |
NHP-H3 | 177.5a | MeCN | 19.85 | MeCN | |
NHP-H4 | 186.3a | MeCN | 20.93 | MeCN | |
NHP-H6 | 159.5a | MeCN | — | — | |
NHP-H7 | 198.0a | MeCN | 18.74 | MeCN | |
NHP-H8 | 204.3a | MeCN | 13.46 | MeCN | |
NHP-H9 | 260.4 | MeCN | 8.46 | MeCN |
[1] |
Ai, W.; Zhong, R.; Liu, X.; Liu, Q. Chem. Rev. 2019, 119, 2876.
doi: 10.1021/acs.chemrev.8b00404 |
[2] |
Jordan, A. J.; Lalic, G.; Sadighi, J. P. Chem. Rev. 2016, 116, 8318.
doi: 10.1021/acs.chemrev.6b00366 |
[3] |
Roy, M. M. D.; Omaña, A. A.; Wilson, A. S. S.; Hill, M. S.; Aldridge, S.; Rivard, E. Chem. Rev. 2021, 121, 12784.
doi: 10.1021/acs.chemrev.1c00278 |
[4] |
McGrady, G. S.; Guilera, G. Chem. Soc. Rev. 2003, 32, 383.
doi: 10.1039/b207999m pmid: 14671793 |
[5] |
Aldridge, S.; Downs, A. J. Chem. Rev. 2001, 101, 3305.
pmid: 11840988 |
[6] |
Ilic, S.; Alherz, A.; Musgrave, C. B.; Glusac, K. D. Chem. Soc. Rev. 2018, 47, 2809.
doi: 10.1039/C7CS00171A |
[7] |
Mayr, H.; Patz, M. Angew. Chem., Int. Ed. 1994, 33, 938.
doi: 10.1002/anie.v33:9 |
[8] |
Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H. J. Am. Chem. Soc. 2001, 123, 9500.
pmid: 11572670 |
[9] |
Wiedner, E. S.; Chambers, M. B.; Pitman, C. L.; Bullock, R. M.; Miller, A. J.; Appel, A. M. Chem. Rev. 2016, 116, 8655.
doi: 10.1021/acs.chemrev.6b00168 pmid: 27483171 |
[10] |
Brereton, K. R.; Smith, N. E.; Hazari, N.; Miller, A. J. M. Chem. Soc. Rev. 2020, 49, 7929.
doi: 10.1039/D0CS00405G |
[11] |
Heiden, Z. M.; Lathem, A. P. Organometallics 2015, 34, 1818.
doi: 10.1021/om5011512 |
[12] |
Sarker, N.; Bruno, J. W. J. Am. Chem. Soc. 1999, 121, 2174.
doi: 10.1021/ja982017b |
[13] |
Ciancanelli, R.; Noll, B. C.; DuBois, D. L.; DuBois, M. R. J. Am. Chem. Soc. 2002, 124, 2984.
pmid: 11902890 |
[14] |
Estes, D. P.; Vannucci, A. K.; Hall, A. R.; Lichtenberger, D. L.; Norton, J. R. Organometallics 2011, 30, 3444.
doi: 10.1021/om2001519 |
[15] |
Hu, Y.; Norton, J. R. J. Am. Chem. Soc. 2014, 136, 5938.
doi: 10.1021/ja412309j |
[16] |
Horn, M.; Schappele, L. H.; Lang-Wittkowski, G.; Mayr, H.; Ofial, A. R. Chem.-Eur. J. 2013, 19, 249.
doi: 10.1002/chem.v19.1 |
[17] |
Longeau, A.; Knochel, P. Tetrahedron Lett. 1996, 37, 6099.
doi: 10.1016/0040-4039(96)01296-8 |
[18] |
Sadow, A. D.; Togni, A. J. Am. Chem. Soc. 2005, 127, 17012.
doi: 10.1021/ja0555163 |
[19] |
Blum, M.; Kappler, J.; Schlindwein, S. H.; Nieger, M.; Gudat, D. Dalton Trans. 2018, 47, 112.
doi: 10.1039/C7DT04110A |
[20] |
Leca, D.; Fensterbank, L.; Lacote, E.; Malacria, M. Chem. Soc. Rev. 2005, 34, 858.
doi: 10.1039/b500511f |
[21] |
Marque, S.; Tordo, P. Top. Curr. Chem. 2005, 250, 43.
|
[22] |
Gao, Y.; Tang, G.; Zhao, Y. Chin. J. Org. Chem. 2018, 38, 62. (in Chinese)
doi: 10.6023/cjoc201708023 |
(高玉珍, 唐果, 赵玉芬, 有机化学, 2018, 38, 62.)
doi: 10.6023/cjoc201708023 |
|
[23] |
Bezombes, J.-P.; Carré, F.; Chuit, C.; Corriu, R. J. P.; Mehdi, A.; Reyé, C. J. Org. Chem. 1997, 535, 81.
|
[24] |
Carré, F.; Chuit, C.; Corriu, R. J. P.; Mehdi, A.; Reyé, C. J. Org. Chem. 1997, 529, 59.
|
[25] |
Gudat, D.; Haghverdi, A.; Nieger, M. Angew. Chem., Int. Ed. 2000, 39, 3084.
doi: 10.1002/(ISSN)1521-3773 |
[26] |
Fleming, S.; Lupton, M. K.; Jekot, K. Inorg. Chem. 1972, 11, 2534.
doi: 10.1021/ic50116a050 |
[27] |
Maryanoff, B. E.; Hutchins, R. O. J. Org. Chem 1972, 37, 3475.
doi: 10.1021/jo00795a018 |
[28] |
Karaghiosoff, K.; Majoral, J. P.; Meriem, A.; Navech, J.; Schmid- peter, A. Tetrahedron Lett. 1983, 24, 2137.
doi: 10.1016/S0040-4039(00)81864-X |
[29] |
Kibardin, A. M.; Mikhailov, Y. B.; Gryaznova, T. V.; Pudovik, A. N. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1986, 35, 878.
doi: 10.1007/BF00954265 |
[30] |
Jennings, W. B.; Randall, D.; Worley, S. D.; Hargis, J. H. J. Chem. Soc., Perkin Trans. II 1981, 1411.
|
[31] |
Dube, J. W.; Farrar, G. J.; Norton, E. L.; Szekely, K. L. S.; Cooper, B. F. T.; Macdonald, C. L. B. Organometallics 2009, 28, 4377.
doi: 10.1021/om900420g |
[32] |
Burck, S.; Gudat, D.; Nieger, M.; Du Mont, W.-W. J. Am. Chem. Soc. 2006, 128, 3946.
doi: 10.1021/ja057827j |
[33] |
Alkhater, M. F.; Alherz, A. W.; Musgrave, C. B. Phys. Chem. Chem. Phys. 2021, 23, 17794.
doi: 10.1039/D1CP02193A |
[34] |
Zhang, J.; Yang, J.-D.; Cheng, J.-P. Angew. Chem., Int. Ed. 2019, 58, 5983.
doi: 10.1002/anie.v58.18 |
[35] |
Liu, L. L.; Wu, Y.; Chen, P.; Chan, C.; Xu, J.; Zhu, J.; Zhao, Y. Org. Chem. Front. 2016, 3, 423.
doi: 10.1039/C6QO00002A |
[36] |
Zhang, J.; Yang, J.-D.; Cheng, J.-P. Chem. Sci. 2020, 11, 3672.
doi: 10.1039/C9SC05883D |
[37] |
Chong, C. C.; Hirao, H.; Kinjo, R. Angew. Chem., Int. Ed. 2014, 53, 3342.
doi: 10.1002/anie.v53.13 |
[38] |
Waterman, R. Organometallics 2013, 32, 7249.
doi: 10.1021/om400760k |
[39] |
Chong, C. C.; Hirao, H.; Kinjo, R. Angew. Chem., Int. Ed. 2015, 54, 190.
doi: 10.1002/anie.v54.1 |
[40] |
Edge, R.; Less, R. J.; McInnes, E. J. L.; Müther, K.; Naseri, V.; Rawson, J. M.; Wright, D. S. Chem. Commun. 2009, 1691.
|
[41] |
Gudat, D. Dalton Trans. 2016, 45, 5896.
doi: 10.1039/c6dt00085a pmid: 26863391 |
[42] |
Ould, D. M. C.; Melen, R. L. Chem.-Eur. J. 2020, 26, 9835.
doi: 10.1002/chem.v26.44 |
[43] |
Speed, A. W. H. Chem. Soc. Rev. 2020, 49, 8335.
doi: 10.1039/D0CS00476F |
[44] |
Zhang, J.; Yang, J.-D.; Cheng, J.-P. Natl. Sci. Rev. 2021, 8, nwaa253.
doi: 10.1093/nsr/nwaa253 |
[45] |
Zhang, Y.-S.; Huan, Z.; Yang, J.-D.; Cheng, J.-P. Chem. Commun. 2022, 58, 12528.
doi: 10.1039/D2CC04844B |
[46] |
Ould, D. M. C.; Tran, T. T. P.; Rawson, J. M.; Melen, R. L. Dalton Trans. 2019, 48, 16922.
doi: 10.1039/C9DT03577J |
[47] |
Chong, C. C.; Kinjo, R. Angew. Chem., Int. Ed. 2015, 54, 12116.
doi: 10.1002/anie.v54.41 |
[48] |
Lu, Y.; Gao, Z. H.; Chen, X. Y.; Guo, J.; Liu, Z.; Dang, Y.; Ye, S.; Wang, Z. X. Chem. Sci. 2017, 8, 7637.
doi: 10.1039/C7SC00824D |
[49] |
Adams, M. R.; Tien, C. H.; Huchenski, B. S. N.; Ferguson, M. J.; Speed, A. W. H. Angew. Chem., Int. Ed. 2017, 56, 6268.
doi: 10.1002/anie.v56.22 |
[50] |
Chong, C. C.; Rao, B.; Kinjo, R. ACS Catal. 2017, 7, 5814.
doi: 10.1021/acscatal.7b01338 |
[51] |
Reed, J. H.; Cramer, N. ChemCatChem 2020, 12, 4262.
doi: 10.1002/cctc.v12.17 |
[52] |
Reed, J. H.; Donets, P. A.; Miaskiewicz, S.; Cramer, N. Angew. Chem., Int. Ed. 2019, 58, 8893.
doi: 10.1002/anie.v58.26 |
[53] |
Zhang, G.; Cramer, N. Angew. Chem., Int. Ed. 2023, 62, e202301076.
doi: 10.1002/anie.v62.17 |
[54] |
Miaskiewicz, S.; Reed, J. H.; Donets, P. A.; Oliveira, C. C.; Cramer, N. Angew. Chem., Int. Ed. 2018, 57, 4039.
doi: 10.1002/anie.v57.15 |
[55] |
Lin, Y. C.; Hatzakis, E.; McCarthy, S. M.; Reichl, K. D.; Lai, T. Y.; Yennawar, H. P.; Radosevich, A. T. J. Am. Chem. Soc. 2017, 139, 6008.
doi: 10.1021/jacs.7b02512 |
[56] |
Adams, M. R.; Tien, C. H.; McDonald, R.; Speed, A. W. H. Angew. Chem., Int. Ed. 2017, 56, 16660.
doi: 10.1002/anie.v56.52 |
[57] |
Rao, B.; Chong, C. C.; Kinjo, R. J. Am. Chem. Soc. 2018, 140, 652.
doi: 10.1021/jacs.7b09754 |
[58] |
Lundrigan, T.; Welsh, E. N.; Hynes, T.; Tien, C. H.; Adams, M. R.; Roy, K. R.; Robertson, K. N.; Speed, A. W. H. J. Am. Chem. Soc. 2019, 141, 14083.
doi: 10.1021/jacs.9b07293 pmid: 31441650 |
[59] |
Lundrigan, T.; Tien, C. H.; Robertson, K. N.; Speed, A. W. H. Chem. Commun. 2020, 56, 8027.
doi: 10.1039/D0CC01072C |
[60] |
Hynes, T.; Welsh, E. N.; McDonald, R.; Ferguson, M. J.; Speed, A. W. H. Organometallics 2018, 37, 841.
doi: 10.1021/acs.organomet.8b00028 |
[61] |
Zhang, J.; Yang, J.-D.; Cheng, J.-P. Nat. Commun. 2021, 12, 2835.
doi: 10.1038/s41467-021-23101-3 |
[62] |
Zhang, J.; Zhao, X.; Yang, J.-D.; Cheng, J.-P. J. Org. Chem. 2022, 87, 294.
doi: 10.1021/acs.joc.1c02360 |
[63] |
Puntigam, O.; Förster, D.; Giffin, N. A.; Burck, S.; Bender, J.; Ehret, F.; Hendsbee, A. D.; Nieger, M.; Masuda, J. D.; Gudat, D. Eur. J. Inorg. Chem. 2013, 2041.
|
[64] |
Burck, S.; Gudat, D.; Nieger, M. Angew. Chem., Int. Ed. 2004, 43, 4801.
doi: 10.1002/anie.v43:36 |
[65] |
Burck, S.; Götz, K.; Kaupp, M.; Nieger, M.; Weber, J.; Schmedt auf der Günne, J.; Gudat, D. J. Am. Chem. Soc. 2009, 131, 10763.
doi: 10.1021/ja903156p |
[66] |
Ma, M.; Shen, L.; Wang, H.; Zhao, Y.; Wu, B.; Yang, X.-J. Organometallics 2020, 39, 1440.
doi: 10.1021/acs.organomet.0c00136 |
[67] |
Abakumov, G. A.; Druzhkov, N. O.; Kazakov, G. G.; Fukin, G. K.; Rumyantsev, R. V.; Cherkasov, V. K. Dokl. Chem. 2019, 489, 279.
doi: 10.1134/S0012500819120012 |
[68] |
Förster, D.; Dilger, H.; Ehret, F.; Nieger, M.; Gudat, D. Eur. J. Inorg. Chem. 2012, 3989.
|
[69] |
Blum, M.; Puntigam, O.; Plebst, S.; Ehret, F.; Bender, J.; Nieger, M.; Gudat, D. Dalton Trans. 2016, 45, 1987.
doi: 10.1039/c5dt02854j pmid: 26337501 |
[70] |
Giffin, N. A.; Hendsbee, A. D.; Masuda, J. D. Dalton Trans. 2016, 45, 12636.
doi: 10.1039/c6dt02790c pmid: 27443569 |
[71] |
Zhang, J.; Yang, J.-D.; Cheng, J.-P. Chem. Sci. 2020, 11, 4786.
doi: 10.1039/D0SC01352H |
[72] |
Huchenski, B. S. N.; Robertson, K. N.; Speed, A. W. H. Eur. J. Org. Chem. 2020, 5140.
|
[73] |
Zhang, J.; Yang, J.-D.; Cheng, J.-P. Chem. Sci. 2020, 11, 8476.
doi: 10.1039/D0SC03220D |
[74] |
Klett, J.; Wozniak, L.; Cramer, N. Angew. Chem., Int. Ed. 2022, 134, e202202306.
doi: 10.1002/ange.v134.30 |
[75] |
Riley, R. D.; Huchenski, B. S. N.; Bamford, K. L.; Speed, A. W. H. Angew. Chem., Int. Ed. 2022, 134, e202204088.
doi: 10.1002/ange.v134.30 |
[1] | 霍海波, 李桂霞, 王世军, 韩春, 师宝君, 李健. 新型γ-咔啉衍生物的合成及其抑菌活性研究[J]. 有机化学, 2024, 44(1): 204-215. |
[2] | 程春霞, 吴露平, 沙风, 伍新燕. 手性叔膦-酰胺不对称催化香豆素与Morita-Baylis-Hillman碳酸酯之间的插烯烯丙基烷基化反应[J]. 有机化学, 2023, 43(9): 3188-3195. |
[3] | 左鑫, 许诗诺, 陈忠洋, 鄢剑锋, 袁耀锋. 茂铁类单分子结电子传输性质的研究进展[J]. 有机化学, 2023, 43(7): 2313-2322. |
[4] | 全翌雯, 蒋心惠, 李文军, 汪舰. 借助有机催化去共轭-羟醛缩合反应来获得α-乙烯基-β-炔基取代的烯醛[J]. 有机化学, 2023, 43(6): 2120-2125. |
[5] | 何金燕, 田富云, 吴青青, 郑月明, 陈玉婷, 许海燕, 金正盛, 詹丽, 程新强, 顾跃玲, 高召兵, 赵桂龙. 基于[3.3.3]螺桨烷的电压门控钙离子通道α2δ亚基配体的合成和生物活性研究[J]. 有机化学, 2023, 43(6): 2226-2238. |
[6] | 景科, 张攀科, 徐森苗. 1,4-氮硼杂芳环在有机和过渡金属催化中的应用[J]. 有机化学, 2023, 43(5): 1742-1750. |
[7] | 钟玉梅, 邹小颖, 卓小丫, 王逸涵, 申佳奕, 郑绿茵, 郭维. 4-氧代-2-亚胺基噻唑烷-5-亚基乙酸乙酯类化合物的设计、合成及抗癌活性[J]. 有机化学, 2023, 43(4): 1452-1461. |
[8] | 刘兴周, 于明加, 梁建华. 原小檗碱骨架的合成及其抗炎活性研究进展[J]. 有机化学, 2023, 43(4): 1325-1340. |
[9] | 张心予, 耿慧慧, 张士磊, 王卫, 陈晓蓓. 一种N-杂环卡宾催化合成氘代苯偶姻的方法[J]. 有机化学, 2023, 43(4): 1510-1516. |
[10] | 戴春波, 夏思奇, 陈晓玉, 杨丽敏. 氮杂环卡宾(NHC)催化[4+3]环加成反应构建4-氨基苯并环庚烯内酯[J]. 有机化学, 2023, 43(3): 1084-1090. |
[11] | 张蓉, 郜祥, 陈玲玲, 南发俊. 噻唑-噁唑串联杂环类RNA剪接抑制剂的发现及构效关系研究[J]. 有机化学, 2022, 42(9): 2925-2939. |
[12] | 王兴, 宋倩倩, 陈续玲, 李鹏飞, 齐昀坤, 李文军. 有机催化远程立体控制6-亚甲基-6H-吲哚与异噁唑-5(4H)-酮的氮杂1,8-共轭加成反应[J]. 有机化学, 2022, 42(6): 1722-1734. |
[13] | 马志伟, 陈晓培, 王川川, 王建玲, 陶京朝, 吕全建. 手性方酰胺催化环状1,3-二羰基化合物对β,γ-不饱和-α-酮酯的不对称Michael加成反应[J]. 有机化学, 2022, 42(5): 1520-1526. |
[14] | 蔡铭, 邵亮, 杨帆, 张继虹, 俞飞. 五环三萜葡萄糖缀合物的设计、合成及体外抗流感病毒活性研究[J]. 有机化学, 2022, 42(5): 1453-1462. |
[15] | 吴逾诸, 申盼盼, 段文增, 马玉道. 卡宾催化对亚甲基苯醌的不对称硼化反应的研究[J]. 有机化学, 2022, 42(5): 1483-1492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||