研究论文

钯催化3-(2-氨基嘧啶-4-基)吲哚2位C—H键芳基化反应的研究

  • 孙美娇 ,
  • 谭晶 ,
  • 谭玉 ,
  • 彭进松 ,
  • 陈春霞
展开
  • 东北林业大学化学化工与资源利用学院 哈尔滨 150040

收稿日期: 2023-04-09

  修回日期: 2023-05-24

  网络出版日期: 2023-07-06

基金资助

黑龙江省自然科学基金(LH2022B003); 高等学校学科创新引智计划(111计划)(B20088)

Pd-Catalyzed C(2)—H Arylation of 3-(2-Aminopyrimidin-4-yl)indoles

  • Meijiao Sun ,
  • Jing Tan ,
  • Yu Tan ,
  • Jinsong Peng ,
  • Chunxia Chen
Expand
  • College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040

Received date: 2023-04-09

  Revised date: 2023-05-24

  Online published: 2023-07-06

Supported by

Natural Science Foundation of Heilongjiang Province(LH2022B003); the Programme of Introducing Talents of Discipline to Universities (111 Project)(B20088)

摘要

N-甲基-3-(2-氨基嘧啶-4-基)吲哚衍生物和碘代芳烃为起始原料, 详细探讨了钯催化吲哚2位选择性C—H键活化/芳基化反应过程. 以醋酸钯为催化剂, 三苯基膦为配体, 碳酸银为添加剂, 碳酸钠为碱, 在120 ℃下于1,4-二氧六环中反应24 h, 可获得较高产率的2-芳基化吲哚衍生物. 在此标准条件下, 通过改变两种反应底物的结构, 探究了该合成方法的适用范围与局限性, 合成得到的系列吲哚衍生物经1H NMR、13C NMR和HRMS结构表征.

本文引用格式

孙美娇 , 谭晶 , 谭玉 , 彭进松 , 陈春霞 . 钯催化3-(2-氨基嘧啶-4-基)吲哚2位C—H键芳基化反应的研究[J]. 有机化学, 2023 , 43(11) : 3945 -3959 . DOI: 10.6023/cjoc202304012

Abstract

Using N-methyl-3-(2-aminopyrimidin-4-yl)indole derivatives and aryl iodides as starting materials, palladium- catalyzed selective C—H bond activation/arylation at the C-2 position of indole was investigated in detail. With palladium acetate as the catalyst, triphenylphosphine as the ligand, silver carbonate as the additive and sodium carbonate as the base, various 2-arylindole products were obtained in high yields in 1,4-dioxane at 120 ℃ for 24 h. Under these standard conditions, the scope and limitation of the synthetic method were explored by changing the structure of two substrates, and the synthesized indole derivatives were characterized by 1H NMR, 13C NMR and HRMS spectra.

参考文献

[1]
(a) Dorababu, A. RSC Med. Chem. 2020, 11, 1335.
[1]
(b) Han, Y.; Dong, W.; Guo, Q.; Li, X; Huang, L. Eur. J. Med. Chem. 2020, 203, 112506.
[1]
(c) Qin, H. L.; Liu, J.; Fang, W. Y.; Ravindar, L; Rakesh, K. P. Eur. J. Med. Chem. 2020, 194, 112245.
[1]
(d) Colenda, B. E.; Lee, H. S.; Reibenspies, J. H.; Hancock, R. D. Inorg. Chim. Acta. 2018, 482, 478.
[1]
(e) Zhao, X. H.; Jia, Y. X.; Li, J. J.; Dong, R.H.; Zhang, J.J.; Ma, C. X.; Wang, H.; Rui, Y.K.; Jiang, X.Y. ACS Appl. Mater. Inter. 2018, 35, 29398.
[1]
(f) Mohbiya, D. R.; Sekar, N. Comput. Theor. Chem. 2018, 1139, 90.
[1]
(g) Zhao, J. F.; Dong, H.; Zheng, Y. J. J. Lumin. 2018, 195, 228.
[2]
Zhang, M. Z.; Chen, Q.; Yang, G. F. Eur. J. Med. Chem. 2015, 89, 42.
[3]
(a) Austin, O.; Chelsea, S.; Patrick, S.; Kent, A. C. ACS Med. Chem. Lett. 2018, 9, 901.
[3]
(b) Cong, H.; Zhao, X. H.; Castle, B. T.; Pomeroy, E. J.; Zhou, B.; John, L.; Wang, Y.; Bian, T. F.; Miao, Z. Y.; Zhang, W. N.; Sham, Y. Y.; David, J. O.; Craig, E. E.; Xing, C. G.; Zhuang, C. L. Mol. Pharmaceut. 2018, 15, 3892.
[3]
(c) Singh, P. K.; Silakari, O. Bioorg. Chem. 2018, 79, 163.
[4]
Kaushik, N. K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C. H.; Verma, A. K.; Choi, E. H. Molecules 2013, 18, 6620.
[5]
Ding, C. F.; Ma, H. X.; Yang, J.; Qin, X. J.; Guy, S. S.; Yu, H. F.; Wei, X.; Liu, Y. P.; Huang, W. Y.; Yang, Z. F.; Wang, X. H.; Luo, X. D.; Org. Lett. 2018, 20, 2702.
[6]
(a) Zhang, Z.; Tanaka, K.; Yu, J. Q. Nature. 2017, 543, 538.
[6]
(b) Zhang, F. L.; Hong, K.; Li, T. J.; Yu, J. Q. Science 2016, 351, 252.
[7]
Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Chem. Soc. Rev. 2012, 41, 7247.
[8]
Kumari, A.; Singh, R. K. Bioorg. Chem. 2019, 89, 103021.
[9]
(a) Zhang, S. S.; Tan, Q. W.; Guan, L. P. Mini-Rev. Med. Chem. 2021, 21, 2285.
[9]
(b) Okada, M.; Sugita, T.; Wong, C. P.; Wakimoto, T.; Abe, I. J. Nat. Prod. 2017, 80, 1205.
[9]
(c) Hong, W.; Li, J.; Chang, Z; Tan, X. L.; Yang, Y.; Ouyang, Y. F.; Yang, Y. H.; Kaur, S.; Paterson, I. C.; Ngeow, Y. F.; Wang, H. J. Antibiot. 2017, 70, 832.
[9]
(d) Kherkhache, H.; Benabdelaziz, I.; Silva, A. M. S.; Lahrech, M. B.; Benalia, M.; Haba, H. Nat. Prod. Res. 2020, 34, 1528.
[9]
(e) Pulla, R. S.; Ummadi, N.; Gudi, Y.; Venkatapuram, P.; Adivireddy, P. J. Heterocyclic. Chem. 2018, 55, 115.
[10]
(a) Esvan, Y. J.; Giraud, F.; Pereira, E.; Suchaud, V.; Nauton, L.; Théry, V.; Dezhenkova, L. G.; Kaluzhny, D. N.; Mazov, V. N.; Shtil, A. A.; Anizon, F.; Moreau, P. Bioorg. Med. Chem. 2016, 24, 3116.
[10]
(b) Karimabad, M. N.; Mahmoodi, M.; Jafarzadeh, A.; Darekordi, A.; Hajizadeh, M. R.; Hassanshahi, G. Mini-Rev. Med. Chem. 2019, 19, 540.
[11]
Bian, M.; Wang, Z.; Xiong, X.; Sun, Y.; Matera, C.; Nicolaou, K. C.; Li, A. J. Am. Chem. Soc. 2012, 134, 8078.
[12]
Vasconcelos, S. N.; Meissner, K. A.; Ferraz, W. R.; Trossini, G. H.; Wrenger, C.; Stefani, H. A. Future Med. Chem. 2019, 11, 525.
[13]
Chadha, N.; Silakari, O. Eur. J. Med. Chem. 2017, 134, 159.
[14]
Singh, P.; Prasher, P.; Dhillon, P.; Bhatti, R. Eur. J. Med. Chem. 2015, 97, 104.
[15]
Sravanthi, T. V.; Manju, S. L. Eur. J. Pharm. Sci. 2016, 91, 1.
[16]
Ye, Q. Y.; Xu, Y.; Zhao, J.; Gao, X. X; Chen, M. J.; Pan, R. l.; Zhong, W.; Wang, M. Z. Transl. Oncol. 2023, 31, 101637.
[17]
Barnes, L.; Blaber, H.; Brooks, D. T. K.; Byers, L.; Buckley, D.; Byron, Z. C.; Chilvers, R. G.; Cochrane, L.; Cooney, E.; Damian, H. A.; Francis, L.; He, D. F.; Grace, J. M. J.; Green, H. J.; Hogarth, E. J. P.; Jusu, L.; Killalea, C. E.; King, O.; Lambert, J.; Lee, Z. J.; Lima, N. S.; Long, C. L.; Mackinnon, M.-L.; Mahdy, S.; Matthews-Wright, J.; Millward, M. J.; Meehan, M. F.; Merrett, C.; Morrison, L.; Parke, H. R. I.; Payne, C.; Payne, L.; Pike, C.; Seal, A.; Senior, A. J.; Smith, K. M.; Stanelyte, K.; Stillibrand, J.; Szpara, R.; Taday, F. F. H.; Threadgould, A. M.; Trainor, R. J.; Waters, J.; Williams, O.; Wong, C. K. W.; Wood, K.; Barton, N.; Gruszka, A.; Henley, Z.; Rowedder, J. E.; Cookson, R.; Jones, K. L.; Nadin, A.; Smith, I. E.; Macdonald, S. J. F.; Nortcliffe, A. J. Med. Chem. 2019, 62, 10402.
[18]
(a) Jian, H. H.; Xin, R. W.; Rui, N. D.; Xiao, Y. L.; Hong, M. L.; Tian, Y. Z.; Jun, Y. X.; Chen, H. L.; Yan, M.; Zhang, S. H.; Hou, W. F.; Tang, T. L.; Ya, D. C. J. Med. Chem. 2021, 64, 12548.
[18]
(b) Yuan, S.; Wang, B.; Dai, Q. Q.; Zhang, X. N.; Zhang, J. Y.; Zuo, J. H.; Liu, H.; Chen, Z. S.; Li, G. B.; Wang, S. M.; Liu, H. M.; Yu, B. J. Med. Chem. 2021, 64, 14895.
[19]
(a) Deng, H.; Jung, J.-K.; Liu, T.; Kuntz, K. W.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 9032.
[19]
(b) Nicolaou, K. C.; Bheema Rao, P.; Hao, J.; Reddy, M. V.; Rassias, G.; Huang, X.; Chen, D. Y.; Snyder, S. A. Angew. Chem., Int. Ed. 2003, 42, 1753.
[19]
(c) Nicolaou, K. C.; Hao, J.; Reddy, M. V.; Rao, P. B.; Rassias, G.; Snyder, S. A.; Huang, X.; Chen, D. Y. K.; Brenzovich, W. E.; Giuseppone, N.; Giannakakou, P.; O'Brate, A. J. Am. Chem. Soc. 2004, 126, 12897.
[19]
(d) Sitnikov, N.; Velder, J.; Abodo, L.; Cuvelier, N.; Neudorfl, J.; Prokop, A.; Krause, G.; Fedorov, A. Y.; Schmalz, H. G. Chem. - Eur. J. 2012, 18, 12096.
[20]
Kumar, P.; Nagtilak, P. J.; Kapur, M. New J. Chem. 2021, 45, 13692.
[21]
(a) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107.
[21]
(b) Sandtorv, A. H. Adv. Synth. Catal. 2015, 357, 2403.
[21]
(c) Wen, J.; Shi, Z. Acc. Chem. Res. 2021, 54, 1723.
[21]
(d) Luo, J. F.; Xu, X.; Zheng, J. L. Chin. J. Org. Chem. 2018, 38, 363. (in Chinese)
[21]
(骆钧飞, 徐星, 郑俊良, 有机化学, 2018, 38, 363.)
[22]
(a) Islam, S.; Larrosa, I. Chem. Eur. J. 2013, 19, 15093.
[22]
(b) Zheng, J.; Zhang, Y.; Cui, S. L. Org. Lett. 2014, 16, 3560.
[22]
(c) Miao, T.; Li, P.; Wang, G. W.; Wang, L. Chem. Asian J. 2013, 8, 3185.
[23]
(a) Lu, M.-Z.; Lu, P.; Xu, Y.-H.; Loh, T.-P. Org. Lett. 2014, 16, 2614.
[23]
(b) Lu, M.-Z.; Ding, X.; Shao, C. D.; Hu, Z. S.; Luo, H. Q.; Zhi, S. Z.; Hu, H. Y.; Kan, Y. H.; Loh, T.-P. Org. Lett. 2020, 22, 2663.
[23]
(c) Tiwari, V. K.; Kamal, N.; Kapur, M. Org. Lett. 2015, 17, 1766.
[24]
(a) Sun, P.; Yang, J. J.; MO, B. C.; Chen, X.; Li, X.; Chen, C. X. J. Org. Chem. 2020, 85, 6761.
[24]
(b) Chen, X.; Sun, P.; MO, B. C.; Chen, C. X.; Peng, J. S. J. Org. Chem. 2021, 86, 352.
[24]
(c) Li, X.; Chen, X.; Wang, H.; Chen, C. X.; Sun, P.; MO, B. C.; Peng, J. S. Org. Biomol. Chem. 2019, 17, 4014.
[24]
(d) Li, X.; Bian, Y. Y.; Chen, X.; Zhang, H.; Wang, W.; Ren, S. D.; Yang, X. C.; Lu, C.; Chen, C. X.; Peng, J. S. Org. Biomol. Chem, 2019, 17, 321.
[24]
(e) Yue, Y. X.; Peng, J. S.; Wang, D. Q.; Bian, Y. Y.; Sun, P.; Chen, C. X. J. Org. Chem. 2017, 82, 5481.
[25]
Yanagisawa, S.; Itami, K. Tetrahedron. 2011, 67, 4425.
[26]
(a) Mota, A. J.; Dedieu, A.; Bour, C.; Suffert, J. J. Am. Chem. Soc. 2005, 127, 7171.
[26]
(b) Garcia-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2006, 128, 6798.
[27]
Jia, H. J.; Wu, K. Y.; Wang, Y. X. CN 108017620 2017 [Chem. Abstr. 2017, 10, 747229]
[28]
Zhang, X. X.; Chen, T. P.; Zhu, G. Y. CN 113563310 2021 [Chem. Abstr. 2021, 10, 709318]
文章导航

/