研究论文

镍催化苯并硅杂环丁烷与酰基硅烷的[4+2]环化反应

  • 张维露 ,
  • 陈绍维 ,
  • 沈晓
展开
  • a 武汉大学高等研究院 武汉 430072
    b 有机硅化合物及材料教育部工程研究中心 武汉 430072

收稿日期: 2023-04-28

  修回日期: 2023-06-24

  网络出版日期: 2023-07-13

基金资助

国家重点研究发展计划(2022YFA1506100); 中央高校基本科研基金(2042023kf1010); 中央高校基本科研基金(2042023kf0202); 国家自然科学基金(21901191)

Nickel-Catalyzed [4+2] Cyclization of Benzosilacyclobutenes and Acylsilanes

  • Weilu Zhang ,
  • Shaowei Chen ,
  • Xiao Shen
Expand
  • a Institute for Advanced Studies, Wuhan University, Wuhan 430072
    b Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan 430072

Received date: 2023-04-28

  Revised date: 2023-06-24

  Online published: 2023-07-13

Supported by

National Key R&D Program of China(2022YFA1506100); Fundamental Research Funds for the Central Universities(2042023kf1010); Fundamental Research Funds for the Central Universities(2042023kf0202); National Natural Science Foundation of China(21901191)

摘要

报道了镍催化苯并硅杂环丁烷与酰基硅烷的[4+2]环化反应, 合成了环状双硅化合物. 该反应条件温和, 表现出较好的底物普适性, 产物还可以通过一步转化合成单醇或二醇化合物.

本文引用格式

张维露 , 陈绍维 , 沈晓 . 镍催化苯并硅杂环丁烷与酰基硅烷的[4+2]环化反应[J]. 有机化学, 2023 , 43(10) : 3635 -3643 . DOI: 10.6023/cjoc202304035

Abstract

A nickel-catalyzed [4+2] cyclization reaction between benzosilacyclobutenes and acylsilanes for the synthesis of cyclic bissilanes is reported. The mild reaction showes good substrate scope and the products can be transformed to monoaclohols or diols via one-step down-stream transformations.

参考文献

[1]
(a) Lee V. Y. Organosilicon Compounds, Elsevier Ltd, England, 2017.
[1]
(b) Hiyama T.; Oestreich M. Organosilicon Chemistry: Novel Approaches and Reactions, Wiley, Germany, 2020.
[1]
(c) Huang J.; Liu F.; Wu X.; Chen J.-Q.; Wu J. Org. Chem. Front. 2022, 9, 2840.
[1]
(d) Zhai X. Y.; Wang X. Q.; Bo W.; Zhou Y.-G. Chin. J. Chem. 2022, 40, 21.
[1]
(e) Liu Y.; Zhan M.; Li P. F. Chin. J. Chem. 2022, 40, 1028.
[1]
(f) An K.; He W. Chin. J. Org. Chem. 2022, 42, 918 (in Chinese).
[1]
(安坤, 何伟, 有机化学, 2022, 42, 918.)
[2]
(a) Raabe G.; Michl J. Chem. Rev. 1985, 85, 419.
[2]
(b) Auner V. N.; Grobe J. Anorg. Allg. Chem. 1983, 500, 132.
[2]
(c) Gor-don M. S.; Boatz J. A.; Walsh R. J. Phys. Chem. 1989, 93, 1584.
[3]
(a) Yuan W.; Smirnov P.; Oestreich M. Chem 2018, 4, 1443.
[3]
(b) Zhang L.; An K.; Wang Y.; Wu Y. D.; Zhang X.; Yu Z. X.; He W. J. Am. Chem. Soc. 2021, 143, 3571.
[3]
(c) Wang X. B.; Zheng Z. J.; Xie J. L.; Gu X. W.; Mu Q. C.; Yin G. W.; Ye F.; Xu Z.; Xu L. W. Angew. Chem., Int. Ed. 2020, 59, 790.
[3]
(d) Chen H.; Chen Y.; Tang X.; Liu S.; Wang R.; Hu T.; Gao L.; Song Z. Angew. Chem., Int. Ed. 2019, 58, 4695.
[3]
(e) Zhao W.-T.; Gao F.; Zhao D. Angew. Chem., Int. Ed. 2018, 57, 6329.
[3]
(f) Mu Q.-C.; Chen J.; Xia C.-G.; Xu L.-W. Coord. Chem. Rev. 2018, 374, 93.
[3]
(e) Huang, W-S.; Wang Q.; Yang H.; Xu L. W.; Synthesis 2022, 54, 5400.
[3]
(f) Chen S.; He X.; Jin C.; Zhang W.-L.; Yang Y.; Liu S.; Lan Y.; Houk K. N.; Shen X. Angew. Chem., Int. Ed. 2022, 61, e202213431.
[3]
(g) Okumura S.; Sun F.; Ishida N.; Murakami M. J. Am. Chem. Soc. 2017, 139, 12414.
[3]
(h) Uenishi K.; Imae I.; Shirakawa E.; Kawakami Y. Macromolecules 2002, 35, 2455.
[3]
(i) Shintani R.; Moriya K.; Hayashi T. J. Am. Chem. Soc. 2011, 133, 16440.
[4]
Okazaki R.; Kang K.-T.; Inamoto N. Tetrahedron Lett. 1981, 22, 235.
[5]
Takeyama Y.; Oshima K.; Utimoto K. Tetrahedron Lett. 1990, 31, 6059.
[6]
Hirano K.; Yorimitsu H.; Oshima K. Org. Lett. 2006, 8, 483.
[7]
Wang Q.; Zhang K.-B.; Xu H.; Li S.-N.; Zhu W.-K.; Ye F.; Xu Z.; Lan Y.; Xu L.-W. ACS Catal. 2022, 12, 4571.
[8]
(a) Zhou G.; Guo Z.; Shen X. Angew. Chem., Int. Ed. 2023, 62, e202217189.
[8]
(b) Priebbenow D. L. Adv. Synth. Catal. 2020, 362, 1927.
[8]
(c) Zhu Z.; Zhang W.; Zhang Y.; Liu S.; Shen X. CCS Chem. 2023, 5, 325.
[8]
(d) Zhang Y.; Zhou G.; Gong X.; Guo Z.; Qi X.; Shen X. Angew. Chem., Int. Ed. 2022, 61, e202202175.
[8]
(e) Zhou G.; Shen X. Angew. Chem., Int. Ed. 2022, 61, e202115334.
[8]
(f) Zhang Y.; Zhang Y.; Ye C.; Qi X.; Wu L.-Z.; Shen X. Nat. Commun. 2022, 13, 6111.
[8]
(g) Zhang Y.; Niu Y.; Guo Y.; Wang J.; Liu S.; Shen X. Angew. Chem., Int. Ed. 2022, 61, e202212201.
[8]
(h) Ye J.-H.; Quach L.; Paulisch T.; Glorius F. J. Am. Chem. Soc. 2019, 141, 16227.
[8]
(i) Zheng L.; Guo X.; Li Y.; Wu Y.; Xue X.; Wang P. Angew. Chem., Int. Ed. 2023, 62, e202216373.
[8]
(i) Ito K.; Tamashima H.; Iwasawa N.; Kusama H. J. Am. Chem. Soc. 2011, 133, 3716.
[8]
(j) Dalton J. C.; Bourque R. A. J. Am. Chem. Soc. 1981, 103, 699.
[9]
(a) Ricci A.; Fiorenza M.; Degl’Innocenti A.; Seconi G.; Dembech P.; Witzgall K.; Bestmann H. J. Angew. Chem., Int. Ed. 1985, 24, 2534.
[9]
(b) Xin L. H.; Johnson J. S. Angew. Chem., Int. Ed. 2003, 42, 1068.
[9]
(c) Xin L. H.; Potnick J. R.; Johnson J. S. J. Am. Chem. Soc. 2004, 126, 3070.
[10]
Nakatani S.; Ito Y.; Sakurai S.; Kodama T.; Tobisu M. J. Org. Chem. 2020, 85, 7588.
文章导航

/