镍催化苯并硅杂环丁烷与酰基硅烷的[4+2]环化反应
收稿日期: 2023-04-28
修回日期: 2023-06-24
网络出版日期: 2023-07-13
基金资助
国家重点研究发展计划(2022YFA1506100); 中央高校基本科研基金(2042023kf1010); 中央高校基本科研基金(2042023kf0202); 国家自然科学基金(21901191)
Nickel-Catalyzed [4+2] Cyclization of Benzosilacyclobutenes and Acylsilanes
Received date: 2023-04-28
Revised date: 2023-06-24
Online published: 2023-07-13
Supported by
National Key R&D Program of China(2022YFA1506100); Fundamental Research Funds for the Central Universities(2042023kf1010); Fundamental Research Funds for the Central Universities(2042023kf0202); National Natural Science Foundation of China(21901191)
张维露 , 陈绍维 , 沈晓 . 镍催化苯并硅杂环丁烷与酰基硅烷的[4+2]环化反应[J]. 有机化学, 2023 , 43(10) : 3635 -3643 . DOI: 10.6023/cjoc202304035
A nickel-catalyzed [4+2] cyclization reaction between benzosilacyclobutenes and acylsilanes for the synthesis of cyclic bissilanes is reported. The mild reaction showes good substrate scope and the products can be transformed to monoaclohols or diols via one-step down-stream transformations.
| [1] | (a) Lee V. Y. Organosilicon Compounds, Elsevier Ltd, England, 2017. |
| [1] | (b) Hiyama T.; Oestreich M. Organosilicon Chemistry: Novel Approaches and Reactions, Wiley, Germany, 2020. |
| [1] | (c) Huang J.; Liu F.; Wu X.; Chen J.-Q.; Wu J. Org. Chem. Front. 2022, 9, 2840. |
| [1] | (d) Zhai X. Y.; Wang X. Q.; Bo W.; Zhou Y.-G. Chin. J. Chem. 2022, 40, 21. |
| [1] | (e) Liu Y.; Zhan M.; Li P. F. Chin. J. Chem. 2022, 40, 1028. |
| [1] | (f) An K.; He W. Chin. J. Org. Chem. 2022, 42, 918 (in Chinese). |
| [1] | (安坤, 何伟, 有机化学, 2022, 42, 918.) |
| [2] | (a) Raabe G.; Michl J. Chem. Rev. 1985, 85, 419. |
| [2] | (b) Auner V. N.; Grobe J. Anorg. Allg. Chem. 1983, 500, 132. |
| [2] | (c) Gor-don M. S.; Boatz J. A.; Walsh R. J. Phys. Chem. 1989, 93, 1584. |
| [3] | (a) Yuan W.; Smirnov P.; Oestreich M. Chem 2018, 4, 1443. |
| [3] | (b) Zhang L.; An K.; Wang Y.; Wu Y. D.; Zhang X.; Yu Z. X.; He W. J. Am. Chem. Soc. 2021, 143, 3571. |
| [3] | (c) Wang X. B.; Zheng Z. J.; Xie J. L.; Gu X. W.; Mu Q. C.; Yin G. W.; Ye F.; Xu Z.; Xu L. W. Angew. Chem., Int. Ed. 2020, 59, 790. |
| [3] | (d) Chen H.; Chen Y.; Tang X.; Liu S.; Wang R.; Hu T.; Gao L.; Song Z. Angew. Chem., Int. Ed. 2019, 58, 4695. |
| [3] | (e) Zhao W.-T.; Gao F.; Zhao D. Angew. Chem., Int. Ed. 2018, 57, 6329. |
| [3] | (f) Mu Q.-C.; Chen J.; Xia C.-G.; Xu L.-W. Coord. Chem. Rev. 2018, 374, 93. |
| [3] | (e) Huang, W-S.; Wang Q.; Yang H.; Xu L. W.; Synthesis 2022, 54, 5400. |
| [3] | (f) Chen S.; He X.; Jin C.; Zhang W.-L.; Yang Y.; Liu S.; Lan Y.; Houk K. N.; Shen X. Angew. Chem., Int. Ed. 2022, 61, e202213431. |
| [3] | (g) Okumura S.; Sun F.; Ishida N.; Murakami M. J. Am. Chem. Soc. 2017, 139, 12414. |
| [3] | (h) Uenishi K.; Imae I.; Shirakawa E.; Kawakami Y. Macromolecules 2002, 35, 2455. |
| [3] | (i) Shintani R.; Moriya K.; Hayashi T. J. Am. Chem. Soc. 2011, 133, 16440. |
| [4] | Okazaki R.; Kang K.-T.; Inamoto N. Tetrahedron Lett. 1981, 22, 235. |
| [5] | Takeyama Y.; Oshima K.; Utimoto K. Tetrahedron Lett. 1990, 31, 6059. |
| [6] | Hirano K.; Yorimitsu H.; Oshima K. Org. Lett. 2006, 8, 483. |
| [7] | Wang Q.; Zhang K.-B.; Xu H.; Li S.-N.; Zhu W.-K.; Ye F.; Xu Z.; Lan Y.; Xu L.-W. ACS Catal. 2022, 12, 4571. |
| [8] | (a) Zhou G.; Guo Z.; Shen X. Angew. Chem., Int. Ed. 2023, 62, e202217189. |
| [8] | (b) Priebbenow D. L. Adv. Synth. Catal. 2020, 362, 1927. |
| [8] | (c) Zhu Z.; Zhang W.; Zhang Y.; Liu S.; Shen X. CCS Chem. 2023, 5, 325. |
| [8] | (d) Zhang Y.; Zhou G.; Gong X.; Guo Z.; Qi X.; Shen X. Angew. Chem., Int. Ed. 2022, 61, e202202175. |
| [8] | (e) Zhou G.; Shen X. Angew. Chem., Int. Ed. 2022, 61, e202115334. |
| [8] | (f) Zhang Y.; Zhang Y.; Ye C.; Qi X.; Wu L.-Z.; Shen X. Nat. Commun. 2022, 13, 6111. |
| [8] | (g) Zhang Y.; Niu Y.; Guo Y.; Wang J.; Liu S.; Shen X. Angew. Chem., Int. Ed. 2022, 61, e202212201. |
| [8] | (h) Ye J.-H.; Quach L.; Paulisch T.; Glorius F. J. Am. Chem. Soc. 2019, 141, 16227. |
| [8] | (i) Zheng L.; Guo X.; Li Y.; Wu Y.; Xue X.; Wang P. Angew. Chem., Int. Ed. 2023, 62, e202216373. |
| [8] | (i) Ito K.; Tamashima H.; Iwasawa N.; Kusama H. J. Am. Chem. Soc. 2011, 133, 3716. |
| [8] | (j) Dalton J. C.; Bourque R. A. J. Am. Chem. Soc. 1981, 103, 699. |
| [9] | (a) Ricci A.; Fiorenza M.; Degl’Innocenti A.; Seconi G.; Dembech P.; Witzgall K.; Bestmann H. J. Angew. Chem., Int. Ed. 1985, 24, 2534. |
| [9] | (b) Xin L. H.; Johnson J. S. Angew. Chem., Int. Ed. 2003, 42, 1068. |
| [9] | (c) Xin L. H.; Potnick J. R.; Johnson J. S. J. Am. Chem. Soc. 2004, 126, 3070. |
| [10] | Nakatani S.; Ito Y.; Sakurai S.; Kodama T.; Tobisu M. J. Org. Chem. 2020, 85, 7588. |
/
| 〈 |
|
〉 |