有机化学 ›› 2023, Vol. 43 ›› Issue (10): 3635-3643.DOI: 10.6023/cjoc202304035 上一篇 下一篇
所属专题: 有机硅化学专辑-2023
研究论文
收稿日期:
2023-04-28
修回日期:
2023-06-24
发布日期:
2023-07-12
基金资助:
Weilu Zhanga,b, Shaowei Chena,b, Xiao Shena,b()
Received:
2023-04-28
Revised:
2023-06-24
Published:
2023-07-12
Contact:
*E-mail: Supported by:
文章分享
报道了镍催化苯并硅杂环丁烷与酰基硅烷的[4+2]环化反应, 合成了环状双硅化合物. 该反应条件温和, 表现出较好的底物普适性, 产物还可以通过一步转化合成单醇或二醇化合物.
张维露, 陈绍维, 沈晓. 镍催化苯并硅杂环丁烷与酰基硅烷的[4+2]环化反应[J]. 有机化学, 2023, 43(10): 3635-3643.
Weilu Zhang, Shaowei Chen, Xiao Shen. Nickel-Catalyzed [4+2] Cyclization of Benzosilacyclobutenes and Acylsilanes[J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3635-3643.
Entry | Ligand | 1a/2a | Solvent | T/℃ | Yield/% |
---|---|---|---|---|---|
1 | DPPM | 1∶1 | Toluene | 100 | <5 |
2 | P(p-MeC6H4)3 | 1∶1 | Toluene | 100 | 32 |
3 | P(nBu)Ad2 | 1∶1 | Toluene | 100 | 16 |
4 | PPh2Vi | 1∶1 | Toluene | 100 | 32 |
5 | PPhCy2 | 1∶1 | Toluene | 100 | 60 |
6 | PPh2Cy | 1∶1 | Toluene | 100 | 53 |
7 | PCy3 | 1∶1 | Toluene | 100 | 42 |
8 | P(nBu)3 | 1∶1 | Toluene | 100 | 56 |
9 | P(nBu)3 | 2.5∶1 | Toluene | 100 | 97 |
10b | P(nBu)3 | 2.5∶1 | Toluene | 80 | 99 (96) |
11 | P(nBu)3 | 2.5∶1 | Toluene | 60 | 76 |
12 | P(nBu)3 | 2.5∶1 | Toluene | 40 | 23 |
13 | P(nBu)3 | 2.5∶1 | Toluene | 25 | 9 |
14c | P(nBu)3 | 2.5∶1 | Toluene | 80 | 72 |
15 | P(nBu)3 | 2.5∶1 | MeCN | 80 | 12 |
16 | P(nBu)3 | 2.5∶1 | DCE | 80 | 44 |
17 | P(nBu)3 | 2.5∶1 | DCM | 80 | 57 |
18 | P(nBu)3 | 2.5∶1 | MTBE | 80 | trace |
19 | L1 | 2.5∶1 | Toluene | 80 | ND |
20 | L2 | 2.5∶1 | Toluene | 80 | ND |
21 | L3 | 2.5∶1 | Toluene | 80 | ND |
22 | L4 | 2.5∶1 | Toluene | 80 | ND |
23 | L5 | 2.5∶1 | Toluene | 80 | ND |
24 | L6 | 2.5∶1 | Toluene | 80 | ND |
25d | L7 | 2.5∶1 | Toluene | 80 | 7 |
Entry | Ligand | 1a/2a | Solvent | T/℃ | Yield/% |
---|---|---|---|---|---|
1 | DPPM | 1∶1 | Toluene | 100 | <5 |
2 | P(p-MeC6H4)3 | 1∶1 | Toluene | 100 | 32 |
3 | P(nBu)Ad2 | 1∶1 | Toluene | 100 | 16 |
4 | PPh2Vi | 1∶1 | Toluene | 100 | 32 |
5 | PPhCy2 | 1∶1 | Toluene | 100 | 60 |
6 | PPh2Cy | 1∶1 | Toluene | 100 | 53 |
7 | PCy3 | 1∶1 | Toluene | 100 | 42 |
8 | P(nBu)3 | 1∶1 | Toluene | 100 | 56 |
9 | P(nBu)3 | 2.5∶1 | Toluene | 100 | 97 |
10b | P(nBu)3 | 2.5∶1 | Toluene | 80 | 99 (96) |
11 | P(nBu)3 | 2.5∶1 | Toluene | 60 | 76 |
12 | P(nBu)3 | 2.5∶1 | Toluene | 40 | 23 |
13 | P(nBu)3 | 2.5∶1 | Toluene | 25 | 9 |
14c | P(nBu)3 | 2.5∶1 | Toluene | 80 | 72 |
15 | P(nBu)3 | 2.5∶1 | MeCN | 80 | 12 |
16 | P(nBu)3 | 2.5∶1 | DCE | 80 | 44 |
17 | P(nBu)3 | 2.5∶1 | DCM | 80 | 57 |
18 | P(nBu)3 | 2.5∶1 | MTBE | 80 | trace |
19 | L1 | 2.5∶1 | Toluene | 80 | ND |
20 | L2 | 2.5∶1 | Toluene | 80 | ND |
21 | L3 | 2.5∶1 | Toluene | 80 | ND |
22 | L4 | 2.5∶1 | Toluene | 80 | ND |
23 | L5 | 2.5∶1 | Toluene | 80 | ND |
24 | L6 | 2.5∶1 | Toluene | 80 | ND |
25d | L7 | 2.5∶1 | Toluene | 80 | 7 |
[1] |
(a) Lee V. Y. Organosilicon Compounds, Elsevier Ltd, England, 2017.
|
(b) Hiyama T.; Oestreich M. Organosilicon Chemistry: Novel Approaches and Reactions, Wiley, Germany, 2020.
|
|
(c) Huang J.; Liu F.; Wu X.; Chen J.-Q.; Wu J. Org. Chem. Front. 2022, 9, 2840.
doi: 10.1039/D2QO00410K |
|
(d) Zhai X. Y.; Wang X. Q.; Bo W.; Zhou Y.-G. Chin. J. Chem. 2022, 40, 21.
doi: 10.1002/cjoc.v40.1 |
|
(e) Liu Y.; Zhan M.; Li P. F. Chin. J. Chem. 2022, 40, 1028.
doi: 10.1002/cjoc.v40.9 |
|
(f) An K.; He W. Chin. J. Org. Chem. 2022, 42, 918 (in Chinese).
doi: 10.6023/cjoc202200016 |
|
(安坤, 何伟, 有机化学, 2022, 42, 918.)
doi: 10.6023/cjoc202200016 |
|
[2] |
(a) Raabe G.; Michl J. Chem. Rev. 1985, 85, 419.
doi: 10.1021/cr00069a005 |
(b) Auner V. N.; Grobe J. Anorg. Allg. Chem. 1983, 500, 132.
|
|
(c) Gor-don M. S.; Boatz J. A.; Walsh R. J. Phys. Chem. 1989, 93, 1584.
doi: 10.1021/j100341a078 |
|
[3] |
(a) Yuan W.; Smirnov P.; Oestreich M. Chem 2018, 4, 1443.
doi: 10.1016/j.chempr.2018.03.017 pmid: 21936508 |
(b) Zhang L.; An K.; Wang Y.; Wu Y. D.; Zhang X.; Yu Z. X.; He W. J. Am. Chem. Soc. 2021, 143, 3571.
doi: 10.1021/jacs.0c13335 pmid: 21936508 |
|
(c) Wang X. B.; Zheng Z. J.; Xie J. L.; Gu X. W.; Mu Q. C.; Yin G. W.; Ye F.; Xu Z.; Xu L. W. Angew. Chem., Int. Ed. 2020, 59, 790.
doi: 10.1002/anie.v59.2 pmid: 21936508 |
|
(d) Chen H.; Chen Y.; Tang X.; Liu S.; Wang R.; Hu T.; Gao L.; Song Z. Angew. Chem., Int. Ed. 2019, 58, 4695.
doi: 10.1002/anie.v58.14 pmid: 21936508 |
|
(e) Zhao W.-T.; Gao F.; Zhao D. Angew. Chem., Int. Ed. 2018, 57, 6329.
doi: 10.1002/anie.v57.21 pmid: 21936508 |
|
(f) Mu Q.-C.; Chen J.; Xia C.-G.; Xu L.-W. Coord. Chem. Rev. 2018, 374, 93.
doi: 10.1016/j.ccr.2018.06.015 pmid: 21936508 |
|
(e) Huang, W-S.; Wang Q.; Yang H.; Xu L. W.; Synthesis 2022, 54, 5400.
doi: 10.1055/a-1929-4890 pmid: 21936508 |
|
(f) Chen S.; He X.; Jin C.; Zhang W.-L.; Yang Y.; Liu S.; Lan Y.; Houk K. N.; Shen X. Angew. Chem., Int. Ed. 2022, 61, e202213431.
pmid: 21936508 |
|
(g) Okumura S.; Sun F.; Ishida N.; Murakami M. J. Am. Chem. Soc. 2017, 139, 12414.
doi: 10.1021/jacs.7b07667 pmid: 21936508 |
|
(h) Uenishi K.; Imae I.; Shirakawa E.; Kawakami Y. Macromolecules 2002, 35, 2455.
doi: 10.1021/ma011763p pmid: 21936508 |
|
(i) Shintani R.; Moriya K.; Hayashi T. J. Am. Chem. Soc. 2011, 133, 16440.
doi: 10.1021/ja208621x pmid: 21936508 |
|
[4] |
Okazaki R.; Kang K.-T.; Inamoto N. Tetrahedron Lett. 1981, 22, 235.
|
[5] |
Takeyama Y.; Oshima K.; Utimoto K. Tetrahedron Lett. 1990, 31, 6059.
doi: 10.1016/S0040-4039(00)98028-6 |
[6] |
Hirano K.; Yorimitsu H.; Oshima K. Org. Lett. 2006, 8, 483.
pmid: 16435865 |
[7] |
Wang Q.; Zhang K.-B.; Xu H.; Li S.-N.; Zhu W.-K.; Ye F.; Xu Z.; Lan Y.; Xu L.-W. ACS Catal. 2022, 12, 4571.
doi: 10.1021/acscatal.2c00533 |
[8] |
(a) Zhou G.; Guo Z.; Shen X. Angew. Chem., Int. Ed. 2023, 62, e202217189.
|
(b) Priebbenow D. L. Adv. Synth. Catal. 2020, 362, 1927.
doi: 10.1002/adsc.v362.10 |
|
(c) Zhu Z.; Zhang W.; Zhang Y.; Liu S.; Shen X. CCS Chem. 2023, 5, 325.
doi: 10.31635/ccschem.022.202202199 |
|
(d) Zhang Y.; Zhou G.; Gong X.; Guo Z.; Qi X.; Shen X. Angew. Chem., Int. Ed. 2022, 61, e202202175.
doi: 10.1002/anie.v61.25 |
|
(e) Zhou G.; Shen X. Angew. Chem., Int. Ed. 2022, 61, e202115334.
|
|
(f) Zhang Y.; Zhang Y.; Ye C.; Qi X.; Wu L.-Z.; Shen X. Nat. Commun. 2022, 13, 6111.
doi: 10.1038/s41467-022-33730-x |
|
(g) Zhang Y.; Niu Y.; Guo Y.; Wang J.; Liu S.; Shen X. Angew. Chem., Int. Ed. 2022, 61, e202212201.
|
|
(h) Ye J.-H.; Quach L.; Paulisch T.; Glorius F. J. Am. Chem. Soc. 2019, 141, 16227.
doi: 10.1021/jacs.9b08960 |
|
(i) Zheng L.; Guo X.; Li Y.; Wu Y.; Xue X.; Wang P. Angew. Chem., Int. Ed. 2023, 62, e202216373.
|
|
(i) Ito K.; Tamashima H.; Iwasawa N.; Kusama H. J. Am. Chem. Soc. 2011, 133, 3716.
doi: 10.1021/ja1102597 |
|
(j) Dalton J. C.; Bourque R. A. J. Am. Chem. Soc. 1981, 103, 699.
doi: 10.1021/ja00393a049 |
|
[9] |
(a) Ricci A.; Fiorenza M.; Degl’Innocenti A.; Seconi G.; Dembech P.; Witzgall K.; Bestmann H. J. Angew. Chem., Int. Ed. 1985, 24, 2534.
|
(b) Xin L. H.; Johnson J. S. Angew. Chem., Int. Ed. 2003, 42, 1068.
|
|
(c) Xin L. H.; Potnick J. R.; Johnson J. S. J. Am. Chem. Soc. 2004, 126, 3070.
doi: 10.1021/ja0496468 |
|
[10] |
Nakatani S.; Ito Y.; Sakurai S.; Kodama T.; Tobisu M. J. Org. Chem. 2020, 85, 7588.
doi: 10.1021/acs.joc.0c00772 pmid: 32342690 |
[1] | 陈祖良, 魏颖静, 张俊良. 供体-受体氮杂环丙烷碳-碳键断裂的环加成反应研究进展[J]. 有机化学, 2023, 43(9): 3078-3088. |
[2] | 孔德亮, 戴闻, 赵怡玲, 陈艺林, 朱红平. 脒基胺硼基硅宾与单酮和二酮的氧化环加成反应研究[J]. 有机化学, 2023, 43(5): 1843-1851. |
[3] | 梁陆祺, 奚娟, 姜若楠, 杨艺, 孙丰钢, 张立志, 李新进, 刘会. 镍催化硫酯转移反应合成芳基硫酯[J]. 有机化学, 2023, 43(4): 1566-1573. |
[4] | 戴春波, 夏思奇, 陈晓玉, 杨丽敏. 氮杂环卡宾(NHC)催化[4+3]环加成反应构建4-氨基苯并环庚烯内酯[J]. 有机化学, 2023, 43(3): 1084-1090. |
[5] | 张妍妍, 张珠珠, 朱圣卿, 储玲玲. 镍催化不对称酰基化反应研究进展[J]. 有机化学, 2023, 43(3): 1023-1035. |
[6] | 吴利城, 伍贤青, 曲景平, 陈宜峰. Quinim配体的探索及其在镍催化烯烃的不对称胺甲酰基-烷基化反应的应用[J]. 有机化学, 2023, 43(12): 4239-4250. |
[7] | 齐云鹏, 林登凯, 陈良安. 酰基镍作为关键中间体参与的酰基还原制备酮的研究进展[J]. 有机化学, 2023, 43(11): 3861-3875. |
[8] | 梁俊秀, 刘亚洲, 王阿木, 吴彦超, 马小锋, 李惠静. 基于原位形成的氮杂邻亚甲基苯醌和卤代萘酚的分子间[4+1]螺环化/去芳香化反应[J]. 有机化学, 2023, 43(11): 3888-3899. |
[9] | 覃小婷, 邹宁, 农彩梅, 莫冬亮. 九元氮杂环化合物合成最新研究进展[J]. 有机化学, 2023, 43(1): 130-155. |
[10] | 孙奇, 孙泽颖, 俞泽, 王光伟. 镍催化炔烃的立体选择性芳基-二氟烷基化反应[J]. 有机化学, 2022, 42(8): 2515-2520. |
[11] | 王君姣, 吕瑜瑜, 尚永伟, 崔振丽, 王克虎, 黄丹凤, 胡雨来. α-羟基酮类化合物参与的反应研究进展[J]. 有机化学, 2022, 42(8): 2300-2321. |
[12] | 余卫国, 王灵娜, 俞晓聪, 罗书平. 荧光染料和镍协同催化的脱羧羰基化反应[J]. 有机化学, 2022, 42(4): 1216-1223. |
[13] | 张玉荣, 王晗, 茆勇军, 施世良. 镍催化丁二烯、亚胺和烯基硼酸的三组分偶联反应[J]. 有机化学, 2022, 42(4): 1198-1209. |
[14] | 李俊飞, 韩宇玲, 刘艳红, 陈建新. 基于氨甲酰基硅烷的β-硝基酰胺衍生物的合成[J]. 有机化学, 2022, 42(11): 3880-3889. |
[15] | 平媛媛, 宋海霞, 孔望清. 镍催化烯烃的不对称还原双官能团化反应研究进展[J]. 有机化学, 2022, 42(10): 3302-3321. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||