综述与进展

双功能二氧化硫替代物在合成磺酰类化合物中的研究进展

  • 吴宇恒 ,
  • 颜岩 ,
  • 寮渭巍
展开
  • 吉林大学化学学院 长春 130012

收稿日期: 2023-05-13

  修回日期: 2023-06-26

  网络出版日期: 2023-07-13

Recent Advances of Bifunctional Sulfur Dioxide Surrogates in Synthesis of Sulfonyl Compounds

  • Yuheng Wu ,
  • Yan Yan ,
  • Weiwei Liao
Expand
  • College of Chemistry, Jilin University, Changchun 130012

Received date: 2023-05-13

  Revised date: 2023-06-26

  Online published: 2023-07-13

摘要

近年来通过二氧化硫插入合成磺酰类化合物的合成方法受到了研究者的关注. 多种二氧化硫替代物参与的磺酰化反应被相继报道, 并成功用于多种磺酰类化合物如砜、磺酰氟和磺酰胺等的合成. 其中部分二氧化硫替代物展现出了双功能的作用——既作为二氧化硫源用于构建磺酰基, 又作为体系中的还原剂. 具有还原性的二氧化硫阴离子自由基在这些反应中起到了关键作用, 提高了磺酰化反应的效率和原子经济性. 重点介绍了近年来这类双功能二氧化硫替代物在磺酰类化合物合成中的研究进展.

本文引用格式

吴宇恒 , 颜岩 , 寮渭巍 . 双功能二氧化硫替代物在合成磺酰类化合物中的研究进展[J]. 有机化学, 2023 , 43(11) : 3713 -3727 . DOI: 10.6023/cjoc202305014

Abstract

The synthesis of sulfonyl compounds via sulfur dioxide insertion has received considerable attention from chemists recently. Various sulfonyl compounds such as sulfones, sulfonyl fluorides and sulfonamides have been prepared through the fixation of sulfur dioxide by employing sulfur dioxide surrogates. In particular, some of sulfur dioxide surrogates display a bifunctional role: not only serving as a source of sulfur dioxide, but also acting as a reducing agent in the desired sulfonylation reactions. The reductive sulfur dioxide anion radical plays a key role in these transformations, and the efficiency and atomic economy of these reactions have been enhanced greatly. This review highlights the recent advances of such bifunctional sulfur dioxide surrogates involved sulfonylation transformations.

参考文献

[1]
(a) Devendar, P.; Yang, G.-F. Top. Curr. Chem. 2017, 375, 82.
[1]
(b) Mustafa, M.; Winum, J.-Y. Expert Opin. Drug Discovery 2022, 17, 501.
[1]
(c) Chen, S.-Y.; G, W.; Fu, Y.-Z. Chem. Res. Chin. Univ. 2023, 44, 178. (in Chinese)
[1]
(任思远, 郭玮, 付永柱, 高等学校化学学报, 2023, 44, 178.)
[2]
Serafini, M.; Cargnin, S.; Massarotti, A.; Pirali, T.; Genazzani, A. A. J. Med. Chem. 2020, 63, 10170.
[3]
Das, P.; Delost, M. D.; Qureshi, M. H.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2019, 62, 4265.
[4]
Ahmad, I.; Shagufta Int. J. Pharm. Pharm. Sci. 2015, 7, 19.
[5]
Cao, S.; Murphy, B. T.; Foster, C.; Lazo, J. S.; Kingston, D. G. Bioorg. Med. Chem. 2009, 17, 2276.
[6]
Mitchell, G.; Bartlett, D. W.; Fraser, T. E. M.; Hawkes, T. R.; Holt, D. C.; Townson, J. K.; Wichert, R. A. Pest Manage. Sci. 2001, 57, 120.
[7]
(a) Vree, T. B.; Van Der Ven André, J. A. M. J. Pharm. Pharmacol. 2010, 51, 239.
[7]
(b) Kondrack, R.; Mohiuddin, S. Expert. Opin. Drug Metab. Toxicol. 2009, 5, 1125.
[8]
Krasselt, M.; Baerwald, C. Expert Opin Pharmacol. 2019, 20, 1689.
[9]
Nguyen, B.; Emmett, E. J.; Willis, M. C. J. Am. Chem. Soc. 2010, 132, 16372.
[10]
(a) Santos, P. S.; Mello, M. T. S. J. Mol. Struct. 1988, 178, 121.
[10]
(b) Seyed Hashtroudi, M.; Fathi Vavsari, V.; Balalaie, S. Org. Biomol. Chem. 2022, 20, 2149.
[10]
(c) Sahoo, A. K.; Dahiya, A.; Rakshit, A.; Patel, B. K. SynOpen 2021, 05, 232.
[10]
(d) Kotha, S.; Khedkar, P. Chem. Rev. 2012, 112, 1650.
[10]
(e) Ye, S.; Qiu, G.; Wu, J. Chem. Commun. 2019, 55, 1013.
[10]
(f) Ye, S.; Yang, M.; Wu, J. Chem. Commun. (Camb.) 2020, 56, 4145.
[10]
(g) Ali, R. ChemistrySelect 2020, 5, 10795.
[10]
(h) He, F.-S.; Yang, M.; Ye, S.-Q.; Wu, J. Chin. Chem. Lett. 2021, 32, 461.
[10]
(i) Wang, M.; Jiang, X. Chem. Record 2021.
[10]
(j) Zeng, D.; Wang, M.; Deng, W.-P.; Jiang, X. Org. Chem. Front. 2020, 7, 3956.
[11]
Khelili, S.; Kihal, N.; Yekhlef, M.; De Tullio, P.; Lebrun, P.; Pirotte, B. Eur. J. Med. Chem. 2012, 54, 873.
[12]
Shalimov, A. A.; Chudakova, T. I.; Vlasenko, Y. G.; Sinitsa, A. D.; Onys’ko, P. P. Chem. Heterocycl. Compd. 2016, 52, 267.
[13]
Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Front Public Health 2020, 8.
[14]
Zhang, C.-P.; Chen, Q.-Y.; Guo, Y.; Xiao, J.-C.; Gu, Y.-C. Chem. Soc. Rev. 2012, 41, 4536.
[15]
Qiu, G.; Zhou, K.; Wu, J. Chem. Commun. 2018, 54, 12561.
[16]
Li, Y.-W.; Liu, T.; Qiu, G.-Y.-S.; Wu, J. Adv. Synth. Catal. 2019, 361, 1154.
[17]
Li, Y.; Chen, S.; Wang, M.; Jiang, X.-F. Angew. Chem., Int. Ed. 2020, 59, 8907.
[18]
Li, Y.; Wang, M.; Jiang, X.-F. Org. Lett. 2021, 23, 4657.
[19]
Liu, Y.; Lin, Q.; Xiao, Z.; Zheng, C.; Guo, Y.; Chen, Q. Y.; Liu, C. Chem.-Eur. J. 2019, 25, 1824.
[20]
Ma, Z.-H.; Liu, Y.-A.; Ma, X.-Y.; Hu, X.-J.; Guo, Y.; Chen, Q.-Y.; Liu, C. Org. Chem. Front. 2022, 9, 1115.
[21]
Wu, F.-H. H., B.-N.; Huang, W.-Y. Chin. J. Org. Chem. 1993, 13, 449. (in Chinese)
[21]
(吴范宏, 黄炳南, 黄维垣, 有机化学, 1993, 13, 449.)
[22]
Huang, B.-N. W., F.-H., Zhou, C.-M. In the 7th National Conference on Spectroscopy, Zhengzhou, 1992, p. 527. (in Chinese)
[22]
(黄炳南, 吴范宏, 周澄明, 第七届全国波谱学学术会议, 郑州, 1992, p. 527.)
[23]
You, G.; Xi, D.; Sun, J.; Hao, L.; Xia, C. Org. Biomol. Chem. 2019, 17, 9479.
[24]
Huang, C.-M.; Li, J.; Wang, S.-Y.; Ji, S.-J. Chin. Chem. Lett. 2020, 31, 1923.
[25]
Zhong, T.; Pang, M.-K.; Chen, Z.-D.; Zhang, B.; Weng, J.; Lu, G. Org. Lett. 2020, 22, 3072.
[26]
Liu, S.; Huang, Y.-G.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2020, 240, 109653.
[27]
He, F.-S.; Yao, Y.-F.; Xie, W.-L.; Wu, J. Adv. Synth. Catal. 2020, 362, 4744.
[28]
Yao, Y.-F.; Yin, Z.-Q.; Chen, W.-Y.; Xie, W.-L.; He, F. S.; Wu, J. Adv. Synth. Catal. 2020, 363, 570.
[29]
Huang, J. P. A.; Ding, F.; Chen, Z.-Y.; Yang, G.-G.; Wu, J. Org. Chem. Front. 2021, 8, 1461.
[30]
Chen, K.; Chen, W.; Han, B.; Chen, W.; Liu, M.; Wu, H. Org. Lett. 2020, 22, 1841.
[31]
Li, Y.-P.; Wang, M.; Jiang, X.-F. Chin. J. Chem. 2020, 38, 1521.
[32]
Wang, M.; Chen, S.; Jiang, X.-F. Org. Lett. 2017, 19, 4916.
[33]
Wu, Y.-H.; Li, C.-J.; Wei, Z.-L.; Liao, W.-W. Org. Lett. 2022, 24, 9112.
[34]
Shavnya, A.; Coffey, S. B.; Hesp, K. D.; Ross, S. C.; Tsai, A. S. Org. Lett. 2016, 18, 5848.
[35]
Zhang, W.; Luo, M.-M. Chem. Commun. 2016, 52, 2980.
[36]
Wang, M.; Tang, B.-C.; Wang, J.-G.; Xiang, J.-C.; Guan, A.-Y.; Huang, P.-P.; Guo, W.-Y.; Wu, Y.-D.; Wu, A.-X. Chem. Commun. 2018, 54, 7641.
[37]
Nguyen, V. D.; Nguyen, V. T.; Haug, G. C.; Dang, H. T.; Arman, H. D.; Ermler, W. C.; Larionov, O. V. ACS Catal. 2019, 9, 4015.
[38]
He, F.-S.; Zhang, M.; Zhang, M.-K.; Luo, X.-X.; Wu, J. Org. Chem. Front. 2021, 8, 3746.
[39]
Chen, X.-L.; Wu, C.-Y.; Ma, J.-T.; Zhuang, S.-Y.; Yu, Z.-C.; Wu, Y.-D.; Wu, A.-X. Org. Lett. 2022, 24, 223.
[40]
Ye, S.; Li, Y.; Wu, J.; Li, Z. Chem. Commun. 2019, 55, 2489.
[41]
Li, Y.-W.; Liu, J. B.; He, F. S.; Wu, J. Chin. J. Chem. 2020, 38, 361.
[42]
Chen, S.-H.; Li, Y.-P.; Wang, M.; Jiang, X.-F. Green Chem. 2020, 22, 322.
[43]
Zhang, H.; Wang, M.; Jiang, X.-F. Green Chem. 2020, 22, 8238.
文章导航

/