研究论文

可见光/路易斯碱协同催化的三氟甲基取代烯烃脱氟硅化反应研究

  • 朱佳洁 ,
  • 万义 ,
  • 袁启洋 ,
  • 魏金莲 ,
  • 张永强
展开
  • 华东理工大学药学院 上海 200237

收稿日期: 2023-05-02

  修回日期: 2023-06-30

  网络出版日期: 2023-07-20

基金资助

国家自然科学基金(22171080); 上海市自然科学基金(23ZR1417200)

Research of Visible Light/Lewis Base Dual Catalytic Defluorinative Silylation of Trifluoromethyl-Substituted Alkenes

  • Jiajie Zhu ,
  • Yi Wan ,
  • Qiyang Yuan ,
  • Jinlian Wei ,
  • Yongqiang Zhang
Expand
  • School of Pharmacy, East China University of Science and Technology, Shanghai 200237

Received date: 2023-05-02

  Revised date: 2023-06-30

  Online published: 2023-07-20

Supported by

National Natural Science Foundation of China(22171080); Natural Science Foundation of Shanghai(23ZR1417200)

摘要

以三氟甲基取代烯烃为底物, 使用硅硼烷为硅自由基供体, 开发了一项可见光/路易斯碱协同催化的脱氟硅化反应新技术, 实现了多样性偕二氟烯丙基硅砌块的绿色高效合成. 新反应以奎宁环为路易斯碱催化剂, 通过其对硅硼键的辅助活化促进硅自由基生成, 表现出绿色温和、体系简单、易于放大、底物适用范围广和官能团兼容性强等优势. 此外, 本研究还初步展示了该类合成砌块在多类型含偕二氟甲基结构单元构建中的应用.

本文引用格式

朱佳洁 , 万义 , 袁启洋 , 魏金莲 , 张永强 . 可见光/路易斯碱协同催化的三氟甲基取代烯烃脱氟硅化反应研究[J]. 有机化学, 2023 , 43(10) : 3623 -3634 . DOI: 10.6023/cjoc202304034

Abstract

A novel photoredox/Lewis base dual-catalytic defluorinative silylation reaction of trifluoromethylsubstituted alkenes for the synthesis of gem-difluoroallylsilanes is reported, where silylboranes are employed as the silyl donor reagents. The protocol proceeds via the catalytic activation of Si—B bond by a Lewis base quinuclidine and the formation of silyl radical, making it easy to scale up. It features mild and green reaction conditions, simple reaction system, broad substrate scope and good functional group compatibility. Furthermore, the potential of this class of building blocks in the construction of various gem-difluoromethyl-containing structures has been also demostrated.

参考文献

[1]
Meanwell N. A. J. Med. Chem. 2011, 54, 2529.
[2]
Han J.-L.; Remete A. M.; Hagan D.; Dobson L. S.; Kiss L.; Izawa K.; Moriwaki H.; Soloshonok V. A. J. Fluorine Chem. 2020, 239, 109639.
[3]
Inoue M.; Sumii Y.; Shibata N. ACS Omega 2020, 5, 10633.
[4]
Zafrani Y.; Moriah G. S.; Yeffet D.; Berliner A.; Amir D.; Marciano D.; Elias S.; Katalan S.; Ashkenazi N.; Madmon M.; Gershonov E.; Saphier S. J. Med. Chem. 2019, 62, 5628.
[5]
Fujita M.; Obayashi M.; Hiyama T. Tetrahedron 1998, 44, 4135.
[6]
Shan C.-C.; Dai K.-Y.; Zhao M.; Xu Y.-H. Eur. J. Org. Chem. 2021, 4054.
[7]
Gao P.; Wang G.-Q.; Xi L.-L.; Wang M.-Y.; Li S.-H.; Shi Z.-Z. Chin. J. Chem. 2019, 37, 1009.
[8]
Coates G.; Tan H.-Y.; Kalff C.; White A. J. P.; Crimmin M. R. Angew. Chem., Int. Ed. 2019, 58, 12514.
[9]
Paioti P.; Mikus M. S.; Lee J.; Koh M. J.; Romiti F.; Torker S.; Pozo J. D.; Hoveyda A. H. J. Am. Chem. Soc. 2019, 141, 19917.
[10]
Gao P.; Gao L.-Z.; Xi L.-L.; Zhang Z.-D.; Li S.-H.; Shi Z.-Z. Org. Chem. Front. 2020, 7, 2618.
[11]
Yang X.-N.; Guo H.-Y.; Zhou R. Chin. J. Org. Chem. 2023, 43, 2720 (in Chinese).
[11]
(杨晓娜, 郭宏宇, 周荣, 有机化学, 2023, 43, 2720.)
[12]
Yang X.-H.; Gao H.-W.; Yan J.-L.; Shi L. Chin. J. Org. Chem. 2022, 42, 4122 (in Chinese).
[12]
(杨惜晖, 高皓炜, 闫甲乐, 史雷, 有机化学, 2022, 42, 4122.)
[13]
Ren L.-Q.; Li N.; Ke J.; He C. Org. Chem. Front. 2022, 9, 6400.
[14]
Ghosh S.; Lai D.; Hajra A. Org. Biomol. Chem. 2021, 19, 2399.
[15]
Yue F.-Y.; Liu J.-H.; Ma H.-N.; Liu Y.-X.; Dong J.-Y.; Wang Q.-M. Org. Lett. 2022, 24, 4019.
[16]
Luo C.; Zhou Y.; Chen H.; Wang T.; Zhang Z.-B.; Han P.; Jing L.-H. Org. Lett. 2022, 24, 4286.
[17]
Xu W.-G.; Xia C.-J.; Shao Q.; Zhang Q.; Liu M.-R.; Zhan H.-W.; Wu M.-B. Org. Chem. Front. 2022, 9, 4949.
[18]
Takemura N.; Sumida Y.; Ohmiya H. ACS Catal. 2022, 12, 7804.
[19]
Liu S.-H.; Pan P.; Fan H.-Q.; Li P.; Wang W.; Zhang Y.-Q. Chem. Sci. 2019, 10, 3817.
[20]
Wan Y.; Zhu J.-J.; Yuan Q.-Y.; Liu S.-H.; Zhao J.-H.; Zhang Y.-Q. Org. Lett. 2021, 23, 1406.
[21]
Pan P.; Yuan Q.-Y.; Liu S. H.; Zhao J. H.; Zhang Y.-Q. Chin. J. Org. Chem. 2022, 42, 1136 (in Chinese).
[21]
(潘鹏, 袁启洋, 刘石惠, 赵建宏, 张永强, 有机化学, 2022, 42, 1136.)
[22]
Zhao Y.-M.; Wan Y.; Yuan Q.-Y.; Wei J.-L.; Zhang Y.-Q. Org. Lett. 2023, 25, 1386.
[23]
Wan Y.; Zhao Y.-M.; Zhu J.-J.; Yuan Q.-Y.; Wang W.; Zhang Y.-Q. Green Chem. 2023, 25, 256.
[24]
Lima F.; Sharma U. K.; Grunenberg L.; Saha D.; Johannsen S.; Sedelmeier J.; Eycken E. V.; Ley S. V. Angew. Chem., Int. Ed. 2017, 56, 15136.
[25]
Zhong M.-B.; Pannecoucke X.; Jubault P.; Poisson T. Chem.-Eur. J. 2021, 27, 11818.
[26]
Choi G. J.; Zhu Q.-L.; Miller D. C.; Gu C.-J.; Robert R. Nature 2016, 539, 268.
[27]
Luo J.; Zhang J. ACS Catal. 2016, 6, 873.
[28]
Jeffrey J. L.; Terrett J. A.; MacMillan D. W. C. Science 2015, 349, 1532.
[29]
Lang S. B.; Wiles R. J.; Kelly C. B.; Molander G. A. Angew. Chem., Int. Ed. 2017, 56, 15073.
[30]
Hu Q.-P.; Cheng J.; Wang Y.; Shi J.; Wang B.-Q.; Hu P.; Zhao K.-Q.; Pan F. Org. Lett. 2021, 23, 4457.
[31]
Aelterman M.; Biremond T.; Jubault P.; Poisson T. Chem.-Eur. J. 2022, 28, e202202194.
[32]
Shishido R.; Uesugi M.; Takahashi R.; Mita T.; Ishiyama T.; Kubota K.; Ito H. J. Am. Chem. Soc. 2020, 142, 14125.
[33]
Carminati D. M.; Decaens J.; Bonnaire S.; Jubaul P.; Fasan R. Angew. Chem., Int. Ed. 2021, 60, 7072.
[34]
Fujita T.; Morioka R.; Arita T.; Ichikawa J. Chem. Commun. 2018, 54, 12938.
文章导航

/