研究论文

N-碘代丁二酰亚胺促进烯基肟的串联氧叠氮化反应: 合成叠氮化异噁唑啉类化合物

  • 刘浩然 ,
  • 俞骏豪 ,
  • 曹同阳 ,
  • 齐林 ,
  • 王力竞
展开
  • a 河北大学化学与材料科学学院 河北保定 071002
    b 药物化学与分子诊断教育部重点实验室 河北省化学生物学重点实验室 河北保定 071002
共同第一作者

收稿日期: 2023-04-25

  修回日期: 2023-07-17

  网络出版日期: 2023-08-15

基金资助

国家自然科学基金(21702043); 河北省自然科学基金(B2021201035)

N-Iodosuccinimide-Promoted Cascade Oxoazidation of Alkenyl Oximes: Synthesis of Azido Isoxazolines

  • Haoran Liu ,
  • Junhao Yu ,
  • Tongyang Cao ,
  • Lin Qi ,
  • Lijing Wang
Expand
  • a College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002
    b Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Baoding, Hebei 071002
The authors contributed equally to this work.

Received date: 2023-04-25

  Revised date: 2023-07-17

  Online published: 2023-08-15

Supported by

National Natural Science Foundation of China(21702043); Hebei Province Natural Science Foundation(B2021201035)

摘要

发展了一种N-碘代丁二酰亚胺(NIS)促进下烯基肟和叠氮化钠的氧叠氮化方法, 以良好的收率合成了一系列叠氮化异噁唑啉衍生物. 该反应操作简便且条件温和. 机理研究表明, 该反应可能经历了一个亲电碘环化/亲核取代的串联历程.

本文引用格式

刘浩然 , 俞骏豪 , 曹同阳 , 齐林 , 王力竞 . N-碘代丁二酰亚胺促进烯基肟的串联氧叠氮化反应: 合成叠氮化异噁唑啉类化合物[J]. 有机化学, 2023 , 43(12) : 4220 -4226 . DOI: 10.6023/cjoc202304033

Abstract

A N-iodosuccinimide (NIS)-promoted cascade oxoazidation of alkenyl oximes with NaN3 was developed, and a series of azido isoxazoline derivatives were synthesized in good yields. The reactions are easy to be conducted under mild conditions. The mechanism study shows that the reaction might involve a cascade electrophilic iodocyclization/nucleophilic substitution pathway.

参考文献

[1]
(a) McDonald R. I.; Liu G.; Stahl S. S. Chem. Rev. 2011, 111, 2981.
[1]
(b) Patel M.; Desai B.; Sheth A.; Dholakiya B. Z.; Naveen T. Asian J. Org. Chem. 2021, 10, 3201.
[1]
(c) Li M.; Zhao D.; Sun K. Chin. J. Org. Chem. 2022, 42, 4152. (in Chinese)
[1]
(李猛, 赵东阳, 孙凯, 有机化学, 2022, 42, 4152.)
[2]
(a) Sivaguru P.; Ning Y.; Bi X. Chem. Rev. 2021, 121, 4253.
[2]
(b) Wu K.; Liang Y.; Jiao N. Molecules 2016, 21, 352.
[3]
(a) Foschi F.; Loro C.; Sala R.; Oble J.; Lo Presti L.; Beccalli E. M.; Poli G.; Broggini G. Org. Lett. 2020, 22, 1402.
[3]
(b) Guo J.; Chen S.; Liu J.; Guo J.; Chen W.; Cai Q.; Liu P.; Sun P. Eur. J. Org. Chem. 2017, 4773.
[3]
(c) Li X.; Qi X.; Hou C.; Chen P.; Liu G. Angew. Chem., Int. Ed. 2020, 59, 17239.
[3]
(d) Ortiz G. X., Jr.; Kang B.; Wang Q. J. Org. Chem. 2014, 79, 571.
[3]
(e) Sequeira F. C.; Turnpenny B. W.; Chemler S. R. Angew. Chem., Int. Ed. 2010, 49, 6365.
[3]
(f) Shen K.; Wang Q. J. Am. Chem. Soc. 2017, 139, 13110.
[3]
(g) Wang L. J.; Ren P. X.; Qi L.; Chen M.; Lu Y. L.; Zhao J. Y.; Liu R.; Chen J. M.; Li W. Org. Lett. 2018, 20, 4411.
[3]
(h) Zhang P.; Sun W.; Li G.; Hong L.; Wang R. Chem. Commun. 2015, 51, 12293.
[4]
Sequeira F. C.; Chemler S. R. Org. Lett. 2012, 14, 4482.
[5]
Zhu L.; Yu H.; Xu Z.; Jiang X.; Lin L.; Wang R. Org. Lett. 2014, 16, 1562.
[6]
Yin H.; Wang T.; Jiao N. Org. Lett. 2014, 16, 2302.
[7]
Zhu R.; Buchwald S. L. J. Am. Chem. Soc. 2015, 137, 8069.
[8]
Cao T. Y.; Qi L.; Dong W.; Yan Z. M.; Ji S. C.; Du J. L.; Zhang L.; Li W.; Wang L. J. J. Org. Chem. 2022, 87, 16578.
[9]
Yang S.; Li H.; Li P.; Yang J.; Wang L. Org. Biomol. Chem. 2020, 18, 715.
[10]
Yu W.; Wang P.-L.; Xu K.; Li H. Asian J. Org. Chem. 2021, 10, 831.
[11]
Wang L.J.; Chen M.; Qi L.; Xu Z.; Li W. Chem. Commun. 2017, 53, 2056.
[12]
Wu X.-B.; Gao Q.; Fan J.-J.; Zhao Z.-Y.; Tu X.-Q.; Cao H.-Q.; Yu J. Org. Lett. 2021, 23, 9134.
文章导航

/