经由氮杂邻联烯醌中间体合成轴手性化合物的研究进展
Progress in Synthesis of Axially Chiral Compounds through aza-Vinylidene o-Quinone Methide Intermediates
Received date: 2023-05-26
Revised date: 2023-07-13
Online published: 2023-08-15
Supported by
National Natural Science Foundation of China(21901261)
姜权彬 . 经由氮杂邻联烯醌中间体合成轴手性化合物的研究进展[J]. 有机化学, 2024 , 44(1) : 159 -172 . DOI: 10.6023/cjoc202305033
Axially chiral compounds are not only important catalysts and ligands in the field of asymmetric synthesis, but also widely exist in many natural products and drugs. Therefore, the development of efficient synthesis of axially chiral compounds has been an important research topic in organic chemistry. Compared with the widely studied vinylidene o-quinone methide (o-VQM) intermediates, the asymmetric catalytic reaction based on the aza-o-VQM intermediates has only attracted people’s attention in recent years, with relatively fewer studies and great potential for development. The progress in the construction of axial chiral compounds through aza-o-VQM intermediates is summarized, and the reaction type, mechanism and synthetic applications are introduced. At last, the prospect of this field is also discussed.
| [1] | (a) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev. 2009, 38, 3193. |
| [1] | (b) Clayden, J.; Moran, W. J.; Edwards, P. J.; LaPlante, S. R. Angew. Chem., nt. Ed. 2009, 48, 6398. |
| [1] | (c) LaPlante, S. R.; Fader, L. D.; Fandrick, K. R.; Fandrick, D. R.; Hucke, O.; Kemper, R.; Miller, S. P. F.; Edwards, P. J. J. Med. Chem. 2011, 54, 7005. |
| [1] | (d) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 563. |
| [1] | (e) Smyth, J. E.; Butler, N. M.; Keller, P. A. Nat. Prod. Rep. 2015, 32, 1562. |
| [2] | (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029. |
| [2] | (b) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155. |
| [2] | (c) Zhou, Q.-L. Privileged Chiral Ligands and Catalysts, Wiley- VCH, Weinheim, Germany, 2011. |
| [2] | (d) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047. |
| [2] | (e) Akiyama, T.; Mori, K. Chem. Rev. 2015, 115, 9277. |
| [2] | (f) Fu, W.; Tang, W. ACS Catal. 2016, 6, 4814. |
| [3] | For selected recent reviews, see: (a) Wencel-Delord, J.; Panossian, A.; Leroux, F. R.; Colobert, F. Chem. Soc. Rev. 2015, 44, 3418. |
| [3] | (b) Kumarasamy, E.; Raghunathan, R.; Sibi, M. P.; Sivaguru, J. Chem. Rev. 2015, 115, 11239. |
| [3] | (c) Wang, Y.-B.; Tan, B. Acc. Chem. Res. 2018, 51, 534. |
| [3] | (d) Zhang, S.; Liao, G.; Shi, B.-F. Chin. J. Org. Chem. 2019, 39, 1522 (in Chinese). |
| [3] | (张硕, 廖港, 史炳锋, 有机化学, 2019, 39, 1522.) |
| [3] | (e) Cheng, J. K.; Xiang, S. H.; Li, S.; Ye, L.; Tan, B. Chem. Rev. 2021, 121, 4805. |
| [3] | (f) Zhang, Z.-X.; Zhai, T.-Y.; Ye, L.-W. Chem. Catal. 2021, 1, 1378. |
| [3] | (g) Song, R.; Xie, Y.; Jin, Z.; Chi, Y. R. Angew. Chem., Int. Ed. 2021, 60, 26026. |
| [3] | (h) Bai, X.-F.; Cui, Y.-M.; Cao, J.; Xu, L.-W. Acc. Chem. Res. 2022, 55, 2545. |
| [3] | (i) Zhang, H.-H.; Shi, F. Acc. Chem. Res. 2022, 55, 2562. |
| [3] | (j) Cheng, J. K.; Xiang, S. H.; Tan, B. Acc. Chem. Res. 2022, 55, 2920. |
| [3] | (k) Mei, G.-J.; Koay, W. L.; Guan, C.-Y.; Lu, Y. Chem 2022, 8, 1855. |
| [3] | (l) Centonze, G.; Portolani, C.; Righi, P.; Bencivenni, G. Angew. Chem., Int. Ed. 2023, 62, e202303966. |
| [3] | (m) Song, T.; Li, R.; Huang, L.; Jia, S.; Mei, G. Chin. J. Org. Chem. 2023, 43, 1977 (in Chinese). |
| [3] | (宋亭谕, 李冉, 黄利华, 贾世琨, 梅光建, 有机化学, 2023, 43, 1977.) |
| [4] | (a) Bermejo, A.; Ros, A.; Fernández, R.; Lassaletta, J. M. J. Am. Chem. Soc. 2008, 130, 15798. |
| [4] | (b) Xu, G.; Fu, W.; Liu, G.; Senanayake, C. H.; Tang, W. J. Am. Chem. Soc. 2014, 136, 570. |
| [4] | (c) Feng, J.; Li, B.; He, Y.; Gu, Z. Angew. Chem., Int. Ed. 2014, 136, 2186. |
| [4] | (d) Shen, D.; Xu, Y.; Shi, S.-L. J. Am. Chem. Soc. 2019, 141, 14938. |
| [4] | (e) Yang, H.; Sun, J.; Gu, W.; Tang, W. J. Am. Chem. Soc. 2020, 142, 8036. |
| [4] | (f) Yang, K.; Mao, Y.; Xu, J.; Wang, H.; He, Y.; Li, W.; Song, Q. J. Am. Chem. Soc. 2021, 143, 10048. |
| [4] | (g) Hedouin, G.; Hazra, S.; Gallou, F.; Handa, S. ACS Catal. 2022, 12, 4918. |
| [4] | (h) Gan, K. B.; Zhong, R.-L.; Zhang, Z.-W.; Kwong, F. Y. J. Am. Chem. Soc. 2022, 144, 14864. |
| [4] | (i) Yang, H.; Tang, W. Nat. Commun. 2022, 13, 4577. |
| [4] | (j) Perveen, S.; Zhang, S.; Wang, L. Song, P.; Ouyang, Y.; Jiao, J.; Duan, X.-H.; Li, P. Angew. Chem., Int. Ed. 2022, 61, e202212108. |
| [5] | (a) Guo, F.; Konkol, L. C.; Thomson, R. J. J. Am. Chem. Soc. 2011, 133, 18. |
| [5] | (b) Quinonero, O.; Jean, M.; Vanthuyne, N.; Roussel, C.; Bonne, D.; Constantieux, T.; Bressy, C.; Bugaut, X.; Rodriguez, J. Angew. Chem., Int. Ed. 2016, 55, 1401. |
| [5] | (c) Wang, Y.-B.; Zheng, S.-C.; Hu, Y.-M.; Tan, B. Nat. Commun. 2017, 8, 15489. |
| [5] | (d) Raut, V. S.; Jean, M.; Vanthuyne, N.; Roussel, C.; Constantieux, T.; Bressy, C.; Bugaut, X.; Bonne, D.; Rodriguez, J. J. Am. Chem. Soc. 2017, 139, 2140. |
| [5] | (e) Link, A.; Sparr, C. Angew. Chem., Int. Ed. 2018, 57, 7136. |
| [5] | (f) Zheng, S.-C.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2019, 58, 9215. |
| [5] | (g) Zhu, S.; Chen, Y.-H.; Wang, Y.-B.; Yu, P.; Li, S.-Y.; Xiang, S.-H.; Wang, J.-Q.; Xiao, J.; Tan, B. Nat. Commun. 2019, 10, 4268. |
| [5] | (h) Min, X.-L.; Zhang, X.-L.; Shen, R.; Zhang, Q.; He, Y. Org. Chem. Front. 2022, 9, 2280. |
| [5] | (i) Shi, L.; Xue, X.; Hong, B.; Li, Q.; Gu, Z. ACS Cent. Sci. 2023, 9, 748. |
| [6] | (a) Gustafson, J. L.; Lim, D.; Miller, S. J. Science 2010, 328, 1251. |
| [6] | (b) Shirakawa, S.; Wu, X.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 14200. |
| [6] | (c) Ma, G.; Sibi, M. P. Chem.-Eur. J. 2015, 21, 11644. |
| [6] | (d) Yu, C.; Huang, H.; Li, X.; Zhang, Y.; Wang, W. J. Am. Chem. Soc. 2016, 138, 6956. |
| [6] | (e) Wang, J.; Chen, M.-W.; Ji, Y.; Hu, S.-B; Zhou, Y.-G. J. Am. Chem. Soc. 2016, 138, 10413. |
| [6] | (f) Jolliffe, J. D.; Armstrong, R. J.; Smith, M. D. Nat. Chem. 2017, 9, 558. |
| [6] | (g) Zhang, J. W.; Wang, J. Angew. Chem., Int. Ed. 2018, 57, 465. |
| [6] | (h) Jiang, F.; Chen, K. W.; Wu, P.; Zhang, Y.-C.; Jiao, Y.; Shi, F. Angew. Chem., Int. Ed. 2019, 58, 15104. |
| [6] | (i) Beleh, O. M.; Miller, E.; Toste, F. D.; Miller, S. J. J. Am. Chem. Soc. 2020, 142, 16461. |
| [6] | (j) Ma, C.; Sheng, F.-T.; Wang, H.-Q.; Deng, S.; Zhang, Y.-C.; Jiao, Y.; Tan, W.; Shi, F. J. Am. Chem. Soc. 2020, 142, 15686. |
| [7] | (a) Osako, T.; Uozumi, Y. Org. Lett. 2014, 16, 5866. |
| [7] | (b) Metrano, A. J.; Miller, S. J. Acc. Chem. Res. 2019, 52, 199. |
| [7] | (c) Munday, E. S.; Grove, M. A.; Feoktistova, T.; Brueckner, A. C.; Walden, D. M.; Young, C. M.; Slawin, A. M. Z.; Campbell, A. D.; Cheong, P. H.; Smith, A. D. Angew. Chem., Int. Ed. 2020, 59, 7897. |
| [7] | (d) Carmona, J. A.; Rodríguez-Franco, C.; Fernández, R.; Hornillos, V.; Lassaletta, J. M. Chem. Soc. Rev. 2021, 50, 2968. |
| [7] | (e) Wang, X.-M.; Zhang, P.; Xu, Q.; Guo, C.-Q.; Zhang, D.-B.; Lu, C.-J.; Liu, R.-R. J. Am. Chem. Soc. 2021, 143, 15005. |
| [7] | (f) Luo, H.-Y.; Li, Z.-H.; Zhu, D.; Yang, Q.; Cao, R.-F.; Ding, T.-M.; Chen, Z.-M. J. Am. Chem. Soc. 2022, 144, 2943. |
| [7] | (g) Jiang, H.; He, X.-K.; Jiang, X.; Zhao, W.; Lu, L.-Q.; Cheng, Y.; Xiao, W.-J. J. Am. Chem. Soc. 2023, 145, 6944. |
| [8] | (a) Tanaka, K. Chem. Asian J. 2009, 4, 508. |
| [8] | (b) Xu, K.; Li, W.; Zhu, S.; Zhu, T. Angew. Chem., Int. Ed. 2019, 58, 17625. |
| [8] | (c) Zhao, Q.; Peng, C.; Wang, Y.-T.; Zhan, G.; Han, B. Org. Chem. Front. 2021, 8, 2772. |
| [8] | (d) Schmidt, T. A.; Sparr, C. Acc. Chem. Res. 2021, 54, 2764. |
| [8] | (e) Teng, F.; Yu, T.; Peng, Y.; Hu, W.; Hu, H.; He, Y.; Luo, S.; Zhu, Q. J. Am. Chem. Soc. 2021, 143, 2722. |
| [8] | (f) Zhang, C.-L.; Gao, Y.-Y.; Wang, H.-Y.; Zhou, B.-A.; Ye, S. Angew. Chem., Int. Ed. 2021, 60, 13918. |
| [8] | (g) Zhang, P.; Xu, Q.; Wang, X.-M.; Feng, J.; Lu, C.-J.; Li, Y.; Liu, R.-R. Angew. Chem., Int. Ed. 2022, 61, e202212101. |
| [8] | (h) Sun, H.-R.; Sharif, A.; Chen, J.; Zhou, L. Chem.-Eur. J. 2023, 29, e202300183. |
| [8] | (i) Chen, Y.-B.; Liu, L.-G.; Chen, C.-M.; Liu, Y.-X.; Zhou, B.; Lu, X.; Xu, Z.; Ye, L.-W. Angew. Chem., Int. Ed. 2023, 62, e202303670. |
| [9] | (a) Qi, L.-W.; Mao, J.-H.; Zhang, J.; Tan, B. Nat. Chem. 2018, 10, 58. |
| [9] | (b) Bai, H.-Y.; Tan, F.-X.; Liu, T.-Q.; Zhu, G.-D.; Tian, J.-M.; Ding, T.-M.; Chen, Z.-M.; Zhang, S.-Y. Nat. Commun. 2019, 10, 3063. |
| [9] | (c) Li, H.; Yan, X.; Zhang, J.; Guo, W.; Jiang, J.; Wang, J. Angew. Chem., Int. Ed. 2019, 58, 6732. |
| [9] | (d) Tian, M.; Bai, D.; Zheng, G.; Chang, J.; Li, X. J. Am. Chem. Soc. 2019, 141, 9527. |
| [9] | (e) Wang, Q.; Gu, Q.; You, S.-L. Acta Chim. Sinica 2019, 77, 690 (in Chinese). |
| [9] | (王强, 顾庆, 游书力, 化学学报, 2019, 77, 690.) |
| [9] | (f) Nguyen, Q.-H.; Guo, S.-M.; Royal, T.; Baudoin, O.; Cramer, N. J. Am. Chem. Soc. 2020, 142, 2161. |
| [9] | (g) Wang, Q.; Zhang, W.-W.; Song, H.; Wang, J.; Zheng, C.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2020, 142, 15678. |
| [9] | (h) Liu, Z.-S.; Xie, P.-P.; Hua, Y.; Wu, C.; Ma, Y.; Chen, J.; Cheng, H.-G.; Hong, X.; Zhou, Q. Chem 2021, 7, 1917. |
| [9] | (i) Liu, C.-X.; Zhang, W.-W.; Yin, S.-Y.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2021, 143, 14025. |
| [9] | (j) Kumar, A.; Sasai, H.; Takizawa, S. Acc. Chem. Res. 2022, 55, 2949. |
| [9] | (k) Liao, G.; Zhang, T.; Jin, L.; Wang, B.-J.; Xu, C.-K.; Lan, Y.; Zhao, Y.; Shi, B.-F. Angew. Chem., Int. Ed. 2022, 61, e202115221. |
| [10] | (a) Zhao, K.; Duan, L.; Xu, S.; Jiang, J.; Fu, Y.; Gu, Z. Chem 2018, 4, 599. |
| [10] | (b) Deng, R.; Xi, J.; Li, Q.; Gu, Z. Chem 2019, 5, 1834. |
| [10] | (c) Wang, G.; Shi, Q.; Hu, W.; Chen, T.; Guo, Y.; Hu, Z.; Gong, M.; Guo, J.; Fu, Z.; Huang, W. Nat. Commun. 2020, 11, 946. |
| [10] | (d) Zhang, X.; Zhao, K.; Li, N.; Yu, J.; Gong, L.-Z.; Gu, Z. Angew. Chem., Int. Ed. 2020, 59, 19899. |
| [10] | (e) Zhang, J.; Sun, T.; Zhang, Z.; Cao, H.; Bai, Z.; Cao, Z.-C. J. Am. Chem. Soc. 2021, 143, 18380. |
| [10] | (f) Wang, G.; Huang, J.; Zhang, J.; Fu, Z. Org. Chem. Front. 2022, 9, 4507. |
| [10] | (g) Zhang, X.; Zhao, K.; Gu, Z. Acc. Chem. Res. 2022, 55, 1620. |
| [10] | (h) Pang, L.; Sun, Q.; Huang, Z.; Li, G.; Liu, J.; Guo, J.; Yao, C.; Yu, J.; Li, Q. Angew. Chem., Int. Ed. 2022, 61, e202211710. |
| [11] | Singh, M. S. In Reactive Intermediates in Organic Chemistry: Structure, Mechanism, and Reactions, Wiley-VCH, Weinheim, Germany, 2014. |
| [12] | Qin, W.; Liu, Y.; Yan, H. Acc. Chem. Res. 2022, 55, 2780. |
| [13] | (a) Beppu, S.; Arae, S.; Furusawa, M.; Arita, K.; Fujimoto, H.; Sumimoto, M.; Imahori, T.; Igawa, K.; Tomooka, K.; Irie, R. Eur. J. Org. Chem. 2017, 6914. |
| [13] | (b) Arae, S.; Beppu, S.; Kawatsu, T.; Igawa, K.; Tomooka, K.; Irie, R. Org. Lett. 2018, 20, 4796. |
| [14] | (a) Wu, X.; Xue, L.; Li, D.; Jia, S.; Ao, J.; Deng, J.; Yan, H. Angew. Chem., Int. Ed. 2017, 56, 13722. |
| [14] | (b) Liu, Y.; Wu, X.; Li, S.; Xue, L.; Shan, C.; Zhao, Z.; Yan, H. Angew. Chem., Int. Ed. 2018, 57, 649. |
| [14] | (c) Jia, S.; Chen, Z.; Zhang, N.; Tan, Y.; Liu, Y.; Deng, J.; Yan, H. J. Am. Chem. Soc. 2018, 140, 7056. |
| [14] | (d) Tan, Y.; Jia, S.; Hu, F.; Liu, Y.; Peng, L.; Li, D.; Yan, H. J. Am. Chem. Soc. 2018, 140, 16893. |
| [14] | (e) Peng, L.; Xu, D.; Yang, X.; Tang, J.; Feng, X.; Zhang, S.-L.; Yan, H. Angew. Chem., Int. Ed. 2019, 58, 216. |
| [14] | (f) Huang, S.; Wen, H.; Tian, Y.; Wang, P.; Qin, W.; Yan, H. Angew. Chem., Int. Ed. 2021, 60, 21486. |
| [14] | (g) Li, K.; Huang, S.; Liu, T.; Jia, S.; Yan, H. J. Am. Chem. Soc. 2022, 144, 7374. |
| [14] | (h) Chang, Y.; Xie, C.; Liu, H.; Huang, S.; Wang, P.; Qin, W.; Yan, H. Nat. Commun. 2022, 13, 1933. |
| [14] | (i) Jia, S.; Tian, Y.; Li, X.; Wang, P.; Lan, Y.; Yan, H. Angew. Chem., Int. Ed. 2022, 61, e202206501. |
| [14] | (j) Liu, H.; Li, K.; Huang, S.; Yan, H. Angew. Chem., Int. Ed. 2022, 61, e202117063. |
| [15] | Wang, Y.-B.; Yu, P.; Zhou, Z.-P.; Zhang, J.; Wang, J.; Luo, S.-H.; Gu, Q.-S.; Houk, K. N.; Tan, B. Nat. Catal. 2019, 2, 504. |
| [16] | (a) Huang, A.; Zhang, L.; Li, D.; Liu, Y.; Yan, H.; Li, W. Org. Lett. 2019, 21, 95. |
| [16] | (b) Zhang, W.; Wei, S.; Wang, W.; Qu, J.; Wang, B. Chem. Commun. 2021, 57, 6550. |
| [16] | (c) Zhang, C.; Tang, Z.; Qiu, Y.; Tang, J.; Ye, S.; Li, Z.; Wu, J. Chem. Catal. 2022, 2, 164. |
| [16] | (d) Zhang, W.; Song, R.; Yang, D.; Lv, J. J. Org. Chem. 2022, 87, 2853. |
| [16] | (e) Gou, B.-B.; Tang, Y.; Lin, Y.-H.; Yu, L.; Jian, Q.-S.; Sun, H.-R.; Chen, J.; Zhou, L. Angew. Chem., Int. Ed. 2022, 61, e202208174. |
| [16] | (f) Tian, Y.; Wu, F.; Jia, S.; Gong, X.; Mao, H.; Wang, P.; Qin, W.; Yan, H. Org. Lett. 2022, 24, 5073. |
| [16] | (g) Cai, B; Cui, Y.; Zhou, J.; Wang, Y.-B.; Yang, L.; Tan, B.; Wang, J. Angew. Chem., Int. Ed. 2023, 62, e202215820. |
| [16] | (h) Woldegiorgis, A. G.; Gu, H.; Lin, X. Org. Lett. 2023, 25, 2068. |
| [17] | (a) Zheng, S.-C.; Wu, S.; Zhou, Q.; Chung, L. W.; Ye, L.; Tan, B. Nat. Commun. 2017, 8, 15238. |
| [17] | (b) Jin, L.; Yao, Q.-J.; Xie, P.-P.; Li, Y.; Zhan, B.-B.; Han, Y.-Q.; Hong, X.; Shi, B.-F. Chem 2020, 6, 497. |
| [17] | (c) Song, H.; Li, Y.; Yao, Q.-J.; Jin, L.; Liu, L.; Liu, Y.-H.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, 59, 6576. |
| [17] | (d) Wang, J.; Qi, X.; Min, X.-L.; Yi, W.; Liu, P.; He, Y. J. Am. Chem. Soc. 2021, 143, 10686. |
| [17] | (e) Jin, L.; Zhang, P.; Li, Y.; Yu, X.; Shi, B.-F. J. Am. Chem. Soc. 2021, 143, 12335. |
| [17] | (f) Feng, J.; Gu, Z. SynOpen 2021, 5, 68. |
| [17] | (g) Yan, J.-L.; Maiti, R.; Ren, S.-C.; Tian, W.; Li, T.; Xu, J.; Mondal, B.; Jin, Z.; Chi, Y. R. Nat. Commun. 2022, 13, 84. |
| [17] | (h) Qiu, S.-Q.; Chen, Y.; Peng, S.-J.; He, S.-J.; Cheng, J. K.; Wang, Y.-B.; Xiang, S.-H.; Song, J.; Yu, P.; Zhang, J.; Tan, B. Angew. Chem., Int. Ed. 2022, 61, e202211211. |
| [17] | (i) Wu, S.; Xiang, S.-H.; Cheng, J. K.; Tan, B. Tetrahedron Chem. 2022, 1, 100009. |
| [17] | (j) Li, Z.-H.; Li, Q.-Z.; Bai, H.-Y.; Zhang, S.-Y. Chem. Catal. 2023, 3, 100594. |
| [18] | Li, Q.-Z.; Lian, P.-F.; Tan, F.-X.; Zhu, G.-D.; Chen, C.; Hao, Y.; Jiang, W.; Wang, X.-H.; Zhou, J.; Zhang, S.-Y. Org. Lett. 2020, 22, 2448. |
| [19] | (a) Masdeu-Bultó, A. M.; Diéguez, M.; Martin, E.; Gómez, M. Coord. Chem. Rev. 2003, 242, 159. |
| [19] | (b) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200. |
| [19] | (c) Otocka, S; Kwiatkowska, M.; Madalińska, L.; Kie?basiński, P. Chem. Rev. 2017, 117, 4147. |
| [19] | (d) Scott, K. A.; Njardarson, J. T. Top. Curr. Chem. 2018, 376, 5. |
| [20] | (a) Matviitsuk, A.; Panger, J. L.; Denmark, S. E. Angew. Chem., nt. Ed. 2020, 59, 19796. |
| [20] | (b) Jiang, Q.; Zhao, X. Chin. J. Org. Chem. 2021, 41, 443 (in Chinese). |
| [20] | (姜权彬, 赵晓丹, 有机化学, 2021, 41, 443.) |
| [20] | (c) Zhu, D.; Chen, Z.-M. Chin. J. Org. Chem. 2022, 42, 3015 (in Chinese). |
| [20] | (朱登, 陈志敏, 有机化学, 2022, 42, 3015.) |
| [20] | (d) Liao, L.; Zhao, X. Acc. Chem. Res. 2022, 55, 2439. |
| [21] | Liang, Y.; Ji, J.; Zhang, X.; Jiang, Q.; Luo, J.; Zhao, X. Angew. Chem., Int. Ed. 2020, 59, 4959. |
| [22] | (a) Biffinger, J. C.; Kim, H. W.; DiMagno, S. G. ChemBioChem 2004, 5, 622. |
| [22] | (b) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827. |
| [22] | (c) Manteau, B.; Pazenok, S.; Vors, J.-P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140. |
| [22] | (d) Landelle, G.; Panossian, A. Curr. Top. Med. Chem. 2014, 14, 941 |
| [23] | (a) Liu, Y. E.; Lu, Z.; Li, B.; Tian, J.; Liu, F.; Zhao, J.; Hou, C.; Li, Y.; Niu, L.; Zhao, B. J. Am. Chem. Soc. 2016, 138, 10730. |
| [23] | (b) Wang, Q.; Cai, Z.-J.; Liu, C.-X.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2019, 141, 9504. |
| [24] | Zhang, L.; Shen, J.; Wu, S.; Zhong, G.; Wang, Y.-B.; Tan, B. Angew. Chem., Int. Ed. 2020, 59, 23077. |
| [25] | Tan, T.-D.; Qian, G.-L.; Su, H.-Z.; Zhu, L.-J.; Ye, L.-W.; Zhou, B.; Hong, X.; Qian, P.-C. Sci. Adv. 2023, 9, eadg4648. |
/
| 〈 |
|
〉 |