综述与进展

经由氮杂邻联烯醌中间体合成轴手性化合物的研究进展

  • 姜权彬
展开
  • 中山大学化学学院 广州 510006

收稿日期: 2023-05-26

  修回日期: 2023-07-13

  网络出版日期: 2023-08-15

基金资助

国家自然科学基金(21901261)

Progress in Synthesis of Axially Chiral Compounds through aza-Vinylidene o-Quinone Methide Intermediates

  • Quanbin Jiang
Expand
  • School of Chemistry, Sun Yat-Sen University, Guangzhou 510006

Received date: 2023-05-26

  Revised date: 2023-07-13

  Online published: 2023-08-15

Supported by

National Natural Science Foundation of China(21901261)

摘要

轴手性化合物不仅是不对称合成领域重要的催化剂和配体, 许多天然产物和药物也是轴手性化合物. 因此, 发展轴手性化合物的高效合成方法是有机化学的重要研究课题. 相对已经被广泛研究的邻联烯醌中间体, 基于氮杂邻联烯醌中间体的不对称催化反应近年来才受到人们的关注, 研究相对较少, 有着很大的发展空间. 总结了经由氮杂邻联烯醌中间体构建轴手性化合物的研究进展, 介绍了反应范围、机理和合成应用. 最后对该研究领域的发展前景进行了总结和展望.

本文引用格式

姜权彬 . 经由氮杂邻联烯醌中间体合成轴手性化合物的研究进展[J]. 有机化学, 2024 , 44(1) : 159 -172 . DOI: 10.6023/cjoc202305033

Abstract

Axially chiral compounds are not only important catalysts and ligands in the field of asymmetric synthesis, but also widely exist in many natural products and drugs. Therefore, the development of efficient synthesis of axially chiral compounds has been an important research topic in organic chemistry. Compared with the widely studied vinylidene o-quinone methide (o-VQM) intermediates, the asymmetric catalytic reaction based on the aza-o-VQM intermediates has only attracted people’s attention in recent years, with relatively fewer studies and great potential for development. The progress in the construction of axial chiral compounds through aza-o-VQM intermediates is summarized, and the reaction type, mechanism and synthetic applications are introduced. At last, the prospect of this field is also discussed.

参考文献

[1]
(a) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev. 2009, 38, 3193.
[1]
(b) Clayden, J.; Moran, W. J.; Edwards, P. J.; LaPlante, S. R. Angew. Chem., nt. Ed. 2009, 48, 6398.
[1]
(c) LaPlante, S. R.; Fader, L. D.; Fandrick, K. R.; Fandrick, D. R.; Hucke, O.; Kemper, R.; Miller, S. P. F.; Edwards, P. J. J. Med. Chem. 2011, 54, 7005.
[1]
(d) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 563.
[1]
(e) Smyth, J. E.; Butler, N. M.; Keller, P. A. Nat. Prod. Rep. 2015, 32, 1562.
[2]
(a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
[2]
(b) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155.
[2]
(c) Zhou, Q.-L. Privileged Chiral Ligands and Catalysts, Wiley- VCH, Weinheim, Germany, 2011.
[2]
(d) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047.
[2]
(e) Akiyama, T.; Mori, K. Chem. Rev. 2015, 115, 9277.
[2]
(f) Fu, W.; Tang, W. ACS Catal. 2016, 6, 4814.
[3]
For selected recent reviews, see: (a) Wencel-Delord, J.; Panossian, A.; Leroux, F. R.; Colobert, F. Chem. Soc. Rev. 2015, 44, 3418.
[3]
(b) Kumarasamy, E.; Raghunathan, R.; Sibi, M. P.; Sivaguru, J. Chem. Rev. 2015, 115, 11239.
[3]
(c) Wang, Y.-B.; Tan, B. Acc. Chem. Res. 2018, 51, 534.
[3]
(d) Zhang, S.; Liao, G.; Shi, B.-F. Chin. J. Org. Chem. 2019, 39, 1522 (in Chinese).
[3]
(张硕, 廖港, 史炳锋, 有机化学, 2019, 39, 1522.)
[3]
(e) Cheng, J. K.; Xiang, S. H.; Li, S.; Ye, L.; Tan, B. Chem. Rev. 2021, 121, 4805.
[3]
(f) Zhang, Z.-X.; Zhai, T.-Y.; Ye, L.-W. Chem. Catal. 2021, 1, 1378.
[3]
(g) Song, R.; Xie, Y.; Jin, Z.; Chi, Y. R. Angew. Chem., Int. Ed. 2021, 60, 26026.
[3]
(h) Bai, X.-F.; Cui, Y.-M.; Cao, J.; Xu, L.-W. Acc. Chem. Res. 2022, 55, 2545.
[3]
(i) Zhang, H.-H.; Shi, F. Acc. Chem. Res. 2022, 55, 2562.
[3]
(j) Cheng, J. K.; Xiang, S. H.; Tan, B. Acc. Chem. Res. 2022, 55, 2920.
[3]
(k) Mei, G.-J.; Koay, W. L.; Guan, C.-Y.; Lu, Y. Chem 2022, 8, 1855.
[3]
(l) Centonze, G.; Portolani, C.; Righi, P.; Bencivenni, G. Angew. Chem., Int. Ed. 2023, 62, e202303966.
[3]
(m) Song, T.; Li, R.; Huang, L.; Jia, S.; Mei, G. Chin. J. Org. Chem. 2023, 43, 1977 (in Chinese).
[3]
(宋亭谕, 李冉, 黄利华, 贾世琨, 梅光建, 有机化学, 2023, 43, 1977.)
[4]
(a) Bermejo, A.; Ros, A.; Fernández, R.; Lassaletta, J. M. J. Am. Chem. Soc. 2008, 130, 15798.
[4]
(b) Xu, G.; Fu, W.; Liu, G.; Senanayake, C. H.; Tang, W. J. Am. Chem. Soc. 2014, 136, 570.
[4]
(c) Feng, J.; Li, B.; He, Y.; Gu, Z. Angew. Chem., Int. Ed. 2014, 136, 2186.
[4]
(d) Shen, D.; Xu, Y.; Shi, S.-L. J. Am. Chem. Soc. 2019, 141, 14938.
[4]
(e) Yang, H.; Sun, J.; Gu, W.; Tang, W. J. Am. Chem. Soc. 2020, 142, 8036.
[4]
(f) Yang, K.; Mao, Y.; Xu, J.; Wang, H.; He, Y.; Li, W.; Song, Q. J. Am. Chem. Soc. 2021, 143, 10048.
[4]
(g) Hedouin, G.; Hazra, S.; Gallou, F.; Handa, S. ACS Catal. 2022, 12, 4918.
[4]
(h) Gan, K. B.; Zhong, R.-L.; Zhang, Z.-W.; Kwong, F. Y. J. Am. Chem. Soc. 2022, 144, 14864.
[4]
(i) Yang, H.; Tang, W. Nat. Commun. 2022, 13, 4577.
[4]
(j) Perveen, S.; Zhang, S.; Wang, L. Song, P.; Ouyang, Y.; Jiao, J.; Duan, X.-H.; Li, P. Angew. Chem., Int. Ed. 2022, 61, e202212108.
[5]
(a) Guo, F.; Konkol, L. C.; Thomson, R. J. J. Am. Chem. Soc. 2011, 133, 18.
[5]
(b) Quinonero, O.; Jean, M.; Vanthuyne, N.; Roussel, C.; Bonne, D.; Constantieux, T.; Bressy, C.; Bugaut, X.; Rodriguez, J. Angew. Chem., Int. Ed. 2016, 55, 1401.
[5]
(c) Wang, Y.-B.; Zheng, S.-C.; Hu, Y.-M.; Tan, B. Nat. Commun. 2017, 8, 15489.
[5]
(d) Raut, V. S.; Jean, M.; Vanthuyne, N.; Roussel, C.; Constantieux, T.; Bressy, C.; Bugaut, X.; Bonne, D.; Rodriguez, J. J. Am. Chem. Soc. 2017, 139, 2140.
[5]
(e) Link, A.; Sparr, C. Angew. Chem., Int. Ed. 2018, 57, 7136.
[5]
(f) Zheng, S.-C.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2019, 58, 9215.
[5]
(g) Zhu, S.; Chen, Y.-H.; Wang, Y.-B.; Yu, P.; Li, S.-Y.; Xiang, S.-H.; Wang, J.-Q.; Xiao, J.; Tan, B. Nat. Commun. 2019, 10, 4268.
[5]
(h) Min, X.-L.; Zhang, X.-L.; Shen, R.; Zhang, Q.; He, Y. Org. Chem. Front. 2022, 9, 2280.
[5]
(i) Shi, L.; Xue, X.; Hong, B.; Li, Q.; Gu, Z. ACS Cent. Sci. 2023, 9, 748.
[6]
(a) Gustafson, J. L.; Lim, D.; Miller, S. J. Science 2010, 328, 1251.
[6]
(b) Shirakawa, S.; Wu, X.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 14200.
[6]
(c) Ma, G.; Sibi, M. P. Chem.-Eur. J. 2015, 21, 11644.
[6]
(d) Yu, C.; Huang, H.; Li, X.; Zhang, Y.; Wang, W. J. Am. Chem. Soc. 2016, 138, 6956.
[6]
(e) Wang, J.; Chen, M.-W.; Ji, Y.; Hu, S.-B; Zhou, Y.-G. J. Am. Chem. Soc. 2016, 138, 10413.
[6]
(f) Jolliffe, J. D.; Armstrong, R. J.; Smith, M. D. Nat. Chem. 2017, 9, 558.
[6]
(g) Zhang, J. W.; Wang, J. Angew. Chem., Int. Ed. 2018, 57, 465.
[6]
(h) Jiang, F.; Chen, K. W.; Wu, P.; Zhang, Y.-C.; Jiao, Y.; Shi, F. Angew. Chem., Int. Ed. 2019, 58, 15104.
[6]
(i) Beleh, O. M.; Miller, E.; Toste, F. D.; Miller, S. J. J. Am. Chem. Soc. 2020, 142, 16461.
[6]
(j) Ma, C.; Sheng, F.-T.; Wang, H.-Q.; Deng, S.; Zhang, Y.-C.; Jiao, Y.; Tan, W.; Shi, F. J. Am. Chem. Soc. 2020, 142, 15686.
[7]
(a) Osako, T.; Uozumi, Y. Org. Lett. 2014, 16, 5866.
[7]
(b) Metrano, A. J.; Miller, S. J. Acc. Chem. Res. 2019, 52, 199.
[7]
(c) Munday, E. S.; Grove, M. A.; Feoktistova, T.; Brueckner, A. C.; Walden, D. M.; Young, C. M.; Slawin, A. M. Z.; Campbell, A. D.; Cheong, P. H.; Smith, A. D. Angew. Chem., Int. Ed. 2020, 59, 7897.
[7]
(d) Carmona, J. A.; Rodríguez-Franco, C.; Fernández, R.; Hornillos, V.; Lassaletta, J. M. Chem. Soc. Rev. 2021, 50, 2968.
[7]
(e) Wang, X.-M.; Zhang, P.; Xu, Q.; Guo, C.-Q.; Zhang, D.-B.; Lu, C.-J.; Liu, R.-R. J. Am. Chem. Soc. 2021, 143, 15005.
[7]
(f) Luo, H.-Y.; Li, Z.-H.; Zhu, D.; Yang, Q.; Cao, R.-F.; Ding, T.-M.; Chen, Z.-M. J. Am. Chem. Soc. 2022, 144, 2943.
[7]
(g) Jiang, H.; He, X.-K.; Jiang, X.; Zhao, W.; Lu, L.-Q.; Cheng, Y.; Xiao, W.-J. J. Am. Chem. Soc. 2023, 145, 6944.
[8]
(a) Tanaka, K. Chem. Asian J. 2009, 4, 508.
[8]
(b) Xu, K.; Li, W.; Zhu, S.; Zhu, T. Angew. Chem., Int. Ed. 2019, 58, 17625.
[8]
(c) Zhao, Q.; Peng, C.; Wang, Y.-T.; Zhan, G.; Han, B. Org. Chem. Front. 2021, 8, 2772.
[8]
(d) Schmidt, T. A.; Sparr, C. Acc. Chem. Res. 2021, 54, 2764.
[8]
(e) Teng, F.; Yu, T.; Peng, Y.; Hu, W.; Hu, H.; He, Y.; Luo, S.; Zhu, Q. J. Am. Chem. Soc. 2021, 143, 2722.
[8]
(f) Zhang, C.-L.; Gao, Y.-Y.; Wang, H.-Y.; Zhou, B.-A.; Ye, S. Angew. Chem., Int. Ed. 2021, 60, 13918.
[8]
(g) Zhang, P.; Xu, Q.; Wang, X.-M.; Feng, J.; Lu, C.-J.; Li, Y.; Liu, R.-R. Angew. Chem., Int. Ed. 2022, 61, e202212101.
[8]
(h) Sun, H.-R.; Sharif, A.; Chen, J.; Zhou, L. Chem.-Eur. J. 2023, 29, e202300183.
[8]
(i) Chen, Y.-B.; Liu, L.-G.; Chen, C.-M.; Liu, Y.-X.; Zhou, B.; Lu, X.; Xu, Z.; Ye, L.-W. Angew. Chem., Int. Ed. 2023, 62, e202303670.
[9]
(a) Qi, L.-W.; Mao, J.-H.; Zhang, J.; Tan, B. Nat. Chem. 2018, 10, 58.
[9]
(b) Bai, H.-Y.; Tan, F.-X.; Liu, T.-Q.; Zhu, G.-D.; Tian, J.-M.; Ding, T.-M.; Chen, Z.-M.; Zhang, S.-Y. Nat. Commun. 2019, 10, 3063.
[9]
(c) Li, H.; Yan, X.; Zhang, J.; Guo, W.; Jiang, J.; Wang, J. Angew. Chem., Int. Ed. 2019, 58, 6732.
[9]
(d) Tian, M.; Bai, D.; Zheng, G.; Chang, J.; Li, X. J. Am. Chem. Soc. 2019, 141, 9527.
[9]
(e) Wang, Q.; Gu, Q.; You, S.-L. Acta Chim. Sinica 2019, 77, 690 (in Chinese).
[9]
(王强, 顾庆, 游书力, 化学学报, 2019, 77, 690.)
[9]
(f) Nguyen, Q.-H.; Guo, S.-M.; Royal, T.; Baudoin, O.; Cramer, N. J. Am. Chem. Soc. 2020, 142, 2161.
[9]
(g) Wang, Q.; Zhang, W.-W.; Song, H.; Wang, J.; Zheng, C.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2020, 142, 15678.
[9]
(h) Liu, Z.-S.; Xie, P.-P.; Hua, Y.; Wu, C.; Ma, Y.; Chen, J.; Cheng, H.-G.; Hong, X.; Zhou, Q. Chem 2021, 7, 1917.
[9]
(i) Liu, C.-X.; Zhang, W.-W.; Yin, S.-Y.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2021, 143, 14025.
[9]
(j) Kumar, A.; Sasai, H.; Takizawa, S. Acc. Chem. Res. 2022, 55, 2949.
[9]
(k) Liao, G.; Zhang, T.; Jin, L.; Wang, B.-J.; Xu, C.-K.; Lan, Y.; Zhao, Y.; Shi, B.-F. Angew. Chem., Int. Ed. 2022, 61, e202115221.
[10]
(a) Zhao, K.; Duan, L.; Xu, S.; Jiang, J.; Fu, Y.; Gu, Z. Chem 2018, 4, 599.
[10]
(b) Deng, R.; Xi, J.; Li, Q.; Gu, Z. Chem 2019, 5, 1834.
[10]
(c) Wang, G.; Shi, Q.; Hu, W.; Chen, T.; Guo, Y.; Hu, Z.; Gong, M.; Guo, J.; Fu, Z.; Huang, W. Nat. Commun. 2020, 11, 946.
[10]
(d) Zhang, X.; Zhao, K.; Li, N.; Yu, J.; Gong, L.-Z.; Gu, Z. Angew. Chem., Int. Ed. 2020, 59, 19899.
[10]
(e) Zhang, J.; Sun, T.; Zhang, Z.; Cao, H.; Bai, Z.; Cao, Z.-C. J. Am. Chem. Soc. 2021, 143, 18380.
[10]
(f) Wang, G.; Huang, J.; Zhang, J.; Fu, Z. Org. Chem. Front. 2022, 9, 4507.
[10]
(g) Zhang, X.; Zhao, K.; Gu, Z. Acc. Chem. Res. 2022, 55, 1620.
[10]
(h) Pang, L.; Sun, Q.; Huang, Z.; Li, G.; Liu, J.; Guo, J.; Yao, C.; Yu, J.; Li, Q. Angew. Chem., Int. Ed. 2022, 61, e202211710.
[11]
Singh, M. S. In Reactive Intermediates in Organic Chemistry: Structure, Mechanism, and Reactions, Wiley-VCH, Weinheim, Germany, 2014.
[12]
Qin, W.; Liu, Y.; Yan, H. Acc. Chem. Res. 2022, 55, 2780.
[13]
(a) Beppu, S.; Arae, S.; Furusawa, M.; Arita, K.; Fujimoto, H.; Sumimoto, M.; Imahori, T.; Igawa, K.; Tomooka, K.; Irie, R. Eur. J. Org. Chem. 2017, 6914.
[13]
(b) Arae, S.; Beppu, S.; Kawatsu, T.; Igawa, K.; Tomooka, K.; Irie, R. Org. Lett. 2018, 20, 4796.
[14]
(a) Wu, X.; Xue, L.; Li, D.; Jia, S.; Ao, J.; Deng, J.; Yan, H. Angew. Chem., Int. Ed. 2017, 56, 13722.
[14]
(b) Liu, Y.; Wu, X.; Li, S.; Xue, L.; Shan, C.; Zhao, Z.; Yan, H. Angew. Chem., Int. Ed. 2018, 57, 649.
[14]
(c) Jia, S.; Chen, Z.; Zhang, N.; Tan, Y.; Liu, Y.; Deng, J.; Yan, H. J. Am. Chem. Soc. 2018, 140, 7056.
[14]
(d) Tan, Y.; Jia, S.; Hu, F.; Liu, Y.; Peng, L.; Li, D.; Yan, H. J. Am. Chem. Soc. 2018, 140, 16893.
[14]
(e) Peng, L.; Xu, D.; Yang, X.; Tang, J.; Feng, X.; Zhang, S.-L.; Yan, H. Angew. Chem., Int. Ed. 2019, 58, 216.
[14]
(f) Huang, S.; Wen, H.; Tian, Y.; Wang, P.; Qin, W.; Yan, H. Angew. Chem., Int. Ed. 2021, 60, 21486.
[14]
(g) Li, K.; Huang, S.; Liu, T.; Jia, S.; Yan, H. J. Am. Chem. Soc. 2022, 144, 7374.
[14]
(h) Chang, Y.; Xie, C.; Liu, H.; Huang, S.; Wang, P.; Qin, W.; Yan, H. Nat. Commun. 2022, 13, 1933.
[14]
(i) Jia, S.; Tian, Y.; Li, X.; Wang, P.; Lan, Y.; Yan, H. Angew. Chem., Int. Ed. 2022, 61, e202206501.
[14]
(j) Liu, H.; Li, K.; Huang, S.; Yan, H. Angew. Chem., Int. Ed. 2022, 61, e202117063.
[15]
Wang, Y.-B.; Yu, P.; Zhou, Z.-P.; Zhang, J.; Wang, J.; Luo, S.-H.; Gu, Q.-S.; Houk, K. N.; Tan, B. Nat. Catal. 2019, 2, 504.
[16]
(a) Huang, A.; Zhang, L.; Li, D.; Liu, Y.; Yan, H.; Li, W. Org. Lett. 2019, 21, 95.
[16]
(b) Zhang, W.; Wei, S.; Wang, W.; Qu, J.; Wang, B. Chem. Commun. 2021, 57, 6550.
[16]
(c) Zhang, C.; Tang, Z.; Qiu, Y.; Tang, J.; Ye, S.; Li, Z.; Wu, J. Chem. Catal. 2022, 2, 164.
[16]
(d) Zhang, W.; Song, R.; Yang, D.; Lv, J. J. Org. Chem. 2022, 87, 2853.
[16]
(e) Gou, B.-B.; Tang, Y.; Lin, Y.-H.; Yu, L.; Jian, Q.-S.; Sun, H.-R.; Chen, J.; Zhou, L. Angew. Chem., Int. Ed. 2022, 61, e202208174.
[16]
(f) Tian, Y.; Wu, F.; Jia, S.; Gong, X.; Mao, H.; Wang, P.; Qin, W.; Yan, H. Org. Lett. 2022, 24, 5073.
[16]
(g) Cai, B; Cui, Y.; Zhou, J.; Wang, Y.-B.; Yang, L.; Tan, B.; Wang, J. Angew. Chem., Int. Ed. 2023, 62, e202215820.
[16]
(h) Woldegiorgis, A. G.; Gu, H.; Lin, X. Org. Lett. 2023, 25, 2068.
[17]
(a) Zheng, S.-C.; Wu, S.; Zhou, Q.; Chung, L. W.; Ye, L.; Tan, B. Nat. Commun. 2017, 8, 15238.
[17]
(b) Jin, L.; Yao, Q.-J.; Xie, P.-P.; Li, Y.; Zhan, B.-B.; Han, Y.-Q.; Hong, X.; Shi, B.-F. Chem 2020, 6, 497.
[17]
(c) Song, H.; Li, Y.; Yao, Q.-J.; Jin, L.; Liu, L.; Liu, Y.-H.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, 59, 6576.
[17]
(d) Wang, J.; Qi, X.; Min, X.-L.; Yi, W.; Liu, P.; He, Y. J. Am. Chem. Soc. 2021, 143, 10686.
[17]
(e) Jin, L.; Zhang, P.; Li, Y.; Yu, X.; Shi, B.-F. J. Am. Chem. Soc. 2021, 143, 12335.
[17]
(f) Feng, J.; Gu, Z. SynOpen 2021, 5, 68.
[17]
(g) Yan, J.-L.; Maiti, R.; Ren, S.-C.; Tian, W.; Li, T.; Xu, J.; Mondal, B.; Jin, Z.; Chi, Y. R. Nat. Commun. 2022, 13, 84.
[17]
(h) Qiu, S.-Q.; Chen, Y.; Peng, S.-J.; He, S.-J.; Cheng, J. K.; Wang, Y.-B.; Xiang, S.-H.; Song, J.; Yu, P.; Zhang, J.; Tan, B. Angew. Chem., Int. Ed. 2022, 61, e202211211.
[17]
(i) Wu, S.; Xiang, S.-H.; Cheng, J. K.; Tan, B. Tetrahedron Chem. 2022, 1, 100009.
[17]
(j) Li, Z.-H.; Li, Q.-Z.; Bai, H.-Y.; Zhang, S.-Y. Chem. Catal. 2023, 3, 100594.
[18]
Li, Q.-Z.; Lian, P.-F.; Tan, F.-X.; Zhu, G.-D.; Chen, C.; Hao, Y.; Jiang, W.; Wang, X.-H.; Zhou, J.; Zhang, S.-Y. Org. Lett. 2020, 22, 2448.
[19]
(a) Masdeu-Bultó, A. M.; Diéguez, M.; Martin, E.; Gómez, M. Coord. Chem. Rev. 2003, 242, 159.
[19]
(b) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.
[19]
(c) Otocka, S; Kwiatkowska, M.; Madalińska, L.; Kie?basiński, P. Chem. Rev. 2017, 117, 4147.
[19]
(d) Scott, K. A.; Njardarson, J. T. Top. Curr. Chem. 2018, 376, 5.
[20]
(a) Matviitsuk, A.; Panger, J. L.; Denmark, S. E. Angew. Chem., nt. Ed. 2020, 59, 19796.
[20]
(b) Jiang, Q.; Zhao, X. Chin. J. Org. Chem. 2021, 41, 443 (in Chinese).
[20]
(姜权彬, 赵晓丹, 有机化学, 2021, 41, 443.)
[20]
(c) Zhu, D.; Chen, Z.-M. Chin. J. Org. Chem. 2022, 42, 3015 (in Chinese).
[20]
(朱登, 陈志敏, 有机化学, 2022, 42, 3015.)
[20]
(d) Liao, L.; Zhao, X. Acc. Chem. Res. 2022, 55, 2439.
[21]
Liang, Y.; Ji, J.; Zhang, X.; Jiang, Q.; Luo, J.; Zhao, X. Angew. Chem., Int. Ed. 2020, 59, 4959.
[22]
(a) Biffinger, J. C.; Kim, H. W.; DiMagno, S. G. ChemBioChem 2004, 5, 622.
[22]
(b) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827.
[22]
(c) Manteau, B.; Pazenok, S.; Vors, J.-P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140.
[22]
(d) Landelle, G.; Panossian, A. Curr. Top. Med. Chem. 2014, 14, 941
[23]
(a) Liu, Y. E.; Lu, Z.; Li, B.; Tian, J.; Liu, F.; Zhao, J.; Hou, C.; Li, Y.; Niu, L.; Zhao, B. J. Am. Chem. Soc. 2016, 138, 10730.
[23]
(b) Wang, Q.; Cai, Z.-J.; Liu, C.-X.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2019, 141, 9504.
[24]
Zhang, L.; Shen, J.; Wu, S.; Zhong, G.; Wang, Y.-B.; Tan, B. Angew. Chem., Int. Ed. 2020, 59, 23077.
[25]
Tan, T.-D.; Qian, G.-L.; Su, H.-Z.; Zhu, L.-J.; Ye, L.-W.; Zhou, B.; Hong, X.; Qian, P.-C. Sci. Adv. 2023, 9, eadg4648.
文章导航

/