有机化学 ›› 2024, Vol. 44 ›› Issue (1): 159-172.DOI: 10.6023/cjoc202305033 上一篇 下一篇
综述与进展
收稿日期:
2023-05-26
修回日期:
2023-07-13
发布日期:
2023-08-16
基金资助:
Received:
2023-05-26
Revised:
2023-07-13
Published:
2023-08-16
Contact:
*E-mail: Supported by:
文章分享
轴手性化合物不仅是不对称合成领域重要的催化剂和配体, 许多天然产物和药物也是轴手性化合物. 因此, 发展轴手性化合物的高效合成方法是有机化学的重要研究课题. 相对已经被广泛研究的邻联烯醌中间体, 基于氮杂邻联烯醌中间体的不对称催化反应近年来才受到人们的关注, 研究相对较少, 有着很大的发展空间. 总结了经由氮杂邻联烯醌中间体构建轴手性化合物的研究进展, 介绍了反应范围、机理和合成应用. 最后对该研究领域的发展前景进行了总结和展望.
姜权彬. 经由氮杂邻联烯醌中间体合成轴手性化合物的研究进展[J]. 有机化学, 2024, 44(1): 159-172.
Quanbin Jiang. Progress in Synthesis of Axially Chiral Compounds through aza-Vinylidene o-Quinone Methide Intermediates[J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 159-172.
[3] |
For selected recent reviews, see: (a) Wencel-Delord, J.; Panossian, A.; Leroux, F. R.; Colobert, F. Chem. Soc. Rev. 2015, 44, 3418.
doi: 10.1039/C5CS00012B |
(b) Kumarasamy, E.; Raghunathan, R.; Sibi, M. P.; Sivaguru, J. Chem. Rev. 2015, 115, 11239.
doi: 10.1021/acs.chemrev.5b00136 |
|
(c) Wang, Y.-B.; Tan, B. Acc. Chem. Res. 2018, 51, 534.
doi: 10.1021/acs.accounts.7b00602 |
|
(d) Zhang, S.; Liao, G.; Shi, B.-F. Chin. J. Org. Chem. 2019, 39, 1522 (in Chinese).
doi: 10.6023/cjoc201904030 |
|
(张硕, 廖港, 史炳锋, 有机化学, 2019, 39, 1522.)
|
|
(e) Cheng, J. K.; Xiang, S. H.; Li, S.; Ye, L.; Tan, B. Chem. Rev. 2021, 121, 4805.
doi: 10.1021/acs.chemrev.0c01306 |
|
(f) Zhang, Z.-X.; Zhai, T.-Y.; Ye, L.-W. Chem. Catal. 2021, 1, 1378.
|
|
(g) Song, R.; Xie, Y.; Jin, Z.; Chi, Y. R. Angew. Chem., Int. Ed. 2021, 60, 26026.
doi: 10.1002/anie.v60.50 |
|
(h) Bai, X.-F.; Cui, Y.-M.; Cao, J.; Xu, L.-W. Acc. Chem. Res. 2022, 55, 2545.
doi: 10.1021/acs.accounts.2c00417 |
|
(i) Zhang, H.-H.; Shi, F. Acc. Chem. Res. 2022, 55, 2562.
doi: 10.1021/acs.accounts.2c00465 |
|
(j) Cheng, J. K.; Xiang, S. H.; Tan, B. Acc. Chem. Res. 2022, 55, 2920.
doi: 10.1021/acs.accounts.2c00509 |
|
(k) Mei, G.-J.; Koay, W. L.; Guan, C.-Y.; Lu, Y. Chem 2022, 8, 1855.
doi: 10.1016/j.chempr.2022.04.011 |
|
(l) Centonze, G.; Portolani, C.; Righi, P.; Bencivenni, G. Angew. Chem., Int. Ed. 2023, 62, e202303966.
|
|
(m) Song, T.; Li, R.; Huang, L.; Jia, S.; Mei, G. Chin. J. Org. Chem. 2023, 43, 1977 (in Chinese).
doi: 10.6023/cjoc202212003 |
|
(宋亭谕, 李冉, 黄利华, 贾世琨, 梅光建, 有机化学, 2023, 43, 1977.)
|
|
[4] |
(a) Bermejo, A.; Ros, A.; Fernández, R.; Lassaletta, J. M. J. Am. Chem. Soc. 2008, 130, 15798.
doi: 10.1021/ja8074693 |
(b) Xu, G.; Fu, W.; Liu, G.; Senanayake, C. H.; Tang, W. J. Am. Chem. Soc. 2014, 136, 570.
doi: 10.1021/ja409669r |
|
(c) Feng, J.; Li, B.; He, Y.; Gu, Z. Angew. Chem., Int. Ed. 2014, 136, 2186.
|
|
(d) Shen, D.; Xu, Y.; Shi, S.-L. J. Am. Chem. Soc. 2019, 141, 14938.
doi: 10.1021/jacs.9b08578 |
|
(e) Yang, H.; Sun, J.; Gu, W.; Tang, W. J. Am. Chem. Soc. 2020, 142, 8036.
doi: 10.1021/jacs.0c02686 |
|
(f) Yang, K.; Mao, Y.; Xu, J.; Wang, H.; He, Y.; Li, W.; Song, Q. J. Am. Chem. Soc. 2021, 143, 10048.
doi: 10.1021/jacs.1c04345 |
|
(g) Hedouin, G.; Hazra, S.; Gallou, F.; Handa, S. ACS Catal. 2022, 12, 4918.
doi: 10.1021/acscatal.2c00933 |
|
(h) Gan, K. B.; Zhong, R.-L.; Zhang, Z.-W.; Kwong, F. Y. J. Am. Chem. Soc. 2022, 144, 14864.
doi: 10.1021/jacs.2c06240 |
|
(i) Yang, H.; Tang, W. Nat. Commun. 2022, 13, 4577.
doi: 10.1038/s41467-022-32360-7 |
|
(j) Perveen, S.; Zhang, S.; Wang, L. Song, P.; Ouyang, Y.; Jiao, J.; Duan, X.-H.; Li, P. Angew. Chem., Int. Ed. 2022, 61, e202212108.
|
|
[5] |
(a) Guo, F.; Konkol, L. C.; Thomson, R. J. J. Am. Chem. Soc. 2011, 133, 18.
doi: 10.1021/ja108717r |
(b) Quinonero, O.; Jean, M.; Vanthuyne, N.; Roussel, C.; Bonne, D.; Constantieux, T.; Bressy, C.; Bugaut, X.; Rodriguez, J. Angew. Chem., Int. Ed. 2016, 55, 1401.
doi: 10.1002/anie.v55.4 |
|
(c) Wang, Y.-B.; Zheng, S.-C.; Hu, Y.-M.; Tan, B. Nat. Commun. 2017, 8, 15489.
doi: 10.1038/ncomms15489 |
|
(d) Raut, V. S.; Jean, M.; Vanthuyne, N.; Roussel, C.; Constantieux, T.; Bressy, C.; Bugaut, X.; Bonne, D.; Rodriguez, J. J. Am. Chem. Soc. 2017, 139, 2140.
doi: 10.1021/jacs.6b11079 |
|
(e) Link, A.; Sparr, C. Angew. Chem., Int. Ed. 2018, 57, 7136.
doi: 10.1002/anie.v57.24 |
|
(f) Zheng, S.-C.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2019, 58, 9215.
doi: 10.1002/anie.v58.27 |
|
(g) Zhu, S.; Chen, Y.-H.; Wang, Y.-B.; Yu, P.; Li, S.-Y.; Xiang, S.-H.; Wang, J.-Q.; Xiao, J.; Tan, B. Nat. Commun. 2019, 10, 4268.
doi: 10.1038/s41467-019-12269-4 |
|
(h) Min, X.-L.; Zhang, X.-L.; Shen, R.; Zhang, Q.; He, Y. Org. Chem. Front. 2022, 9, 2280.
doi: 10.1039/D1QO01699G |
|
(i) Shi, L.; Xue, X.; Hong, B.; Li, Q.; Gu, Z. ACS Cent. Sci. 2023, 9, 748.
doi: 10.1021/acscentsci.2c01207 |
|
[1] |
(a) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev. 2009, 38, 3193.
doi: 10.1039/b821092f |
(b) Clayden, J.; Moran, W. J.; Edwards, P. J.; LaPlante, S. R. Angew. Chem., nt. Ed. 2009, 48, 6398.
|
|
(c) LaPlante, S. R.; Fader, L. D.; Fandrick, K. R.; Fandrick, D. R.; Hucke, O.; Kemper, R.; Miller, S. P. F.; Edwards, P. J. J. Med. Chem. 2011, 54, 7005.
doi: 10.1021/jm200584g |
|
(d) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 563.
doi: 10.1021/cr100155e |
|
(e) Smyth, J. E.; Butler, N. M.; Keller, P. A. Nat. Prod. Rep. 2015, 32, 1562.
doi: 10.1039/C4NP00121D |
|
[2] |
(a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
doi: 10.1021/cr020049i |
(b) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155.
doi: 10.1021/cr020025b |
|
(c) Zhou, Q.-L. Privileged Chiral Ligands and Catalysts, Wiley- VCH, Weinheim, Germany, 2011.
|
|
(d) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047.
doi: 10.1021/cr5001496 |
|
(e) Akiyama, T.; Mori, K. Chem. Rev. 2015, 115, 9277.
doi: 10.1021/acs.chemrev.5b00041 |
|
(f) Fu, W.; Tang, W. ACS Catal. 2016, 6, 4814.
doi: 10.1021/acscatal.6b01001 |
|
[6] |
(a) Gustafson, J. L.; Lim, D.; Miller, S. J. Science 2010, 328, 1251.
doi: 10.1126/science.1188403 |
(b) Shirakawa, S.; Wu, X.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 14200.
doi: 10.1002/anie.v52.52 |
|
(c) Ma, G.; Sibi, M. P. Chem.-Eur. J. 2015, 21, 11644.
doi: 10.1002/chem.v21.33 |
|
(d) Yu, C.; Huang, H.; Li, X.; Zhang, Y.; Wang, W. J. Am. Chem. Soc. 2016, 138, 6956.
doi: 10.1021/jacs.6b03609 |
|
(e) Wang, J.; Chen, M.-W.; Ji, Y.; Hu, S.-B; Zhou, Y.-G. J. Am. Chem. Soc. 2016, 138, 10413.
doi: 10.1021/jacs.6b06009 |
|
(f) Jolliffe, J. D.; Armstrong, R. J.; Smith, M. D. Nat. Chem. 2017, 9, 558.
doi: 10.1038/nchem.2710 |
|
(g) Zhang, J. W.; Wang, J. Angew. Chem., Int. Ed. 2018, 57, 465.
doi: 10.1002/anie.v57.2 |
|
(h) Jiang, F.; Chen, K. W.; Wu, P.; Zhang, Y.-C.; Jiao, Y.; Shi, F. Angew. Chem., Int. Ed. 2019, 58, 15104.
doi: 10.1002/anie.v58.42 |
|
(i) Beleh, O. M.; Miller, E.; Toste, F. D.; Miller, S. J. J. Am. Chem. Soc. 2020, 142, 16461.
doi: 10.1021/jacs.0c08057 |
|
(j) Ma, C.; Sheng, F.-T.; Wang, H.-Q.; Deng, S.; Zhang, Y.-C.; Jiao, Y.; Tan, W.; Shi, F. J. Am. Chem. Soc. 2020, 142, 15686.
doi: 10.1021/jacs.0c00208 |
|
[7] |
(a) Osako, T.; Uozumi, Y. Org. Lett. 2014, 16, 5866.
doi: 10.1021/ol502778j |
(b) Metrano, A. J.; Miller, S. J. Acc. Chem. Res. 2019, 52, 199.
doi: 10.1021/acs.accounts.8b00473 |
|
(c) Munday, E. S.; Grove, M. A.; Feoktistova, T.; Brueckner, A. C.; Walden, D. M.; Young, C. M.; Slawin, A. M. Z.; Campbell, A. D.; Cheong, P. H.; Smith, A. D. Angew. Chem., Int. Ed. 2020, 59, 7897.
doi: 10.1002/anie.v59.20 |
|
(d) Carmona, J. A.; Rodríguez-Franco, C.; Fernández, R.; Hornillos, V.; Lassaletta, J. M. Chem. Soc. Rev. 2021, 50, 2968.
doi: 10.1039/D0CS00870B |
|
(e) Wang, X.-M.; Zhang, P.; Xu, Q.; Guo, C.-Q.; Zhang, D.-B.; Lu, C.-J.; Liu, R.-R. J. Am. Chem. Soc. 2021, 143, 15005.
doi: 10.1021/jacs.1c07741 |
|
(f) Luo, H.-Y.; Li, Z.-H.; Zhu, D.; Yang, Q.; Cao, R.-F.; Ding, T.-M.; Chen, Z.-M. J. Am. Chem. Soc. 2022, 144, 2943.
doi: 10.1021/jacs.1c09635 |
|
(g) Jiang, H.; He, X.-K.; Jiang, X.; Zhao, W.; Lu, L.-Q.; Cheng, Y.; Xiao, W.-J. J. Am. Chem. Soc. 2023, 145, 6944.
doi: 10.1021/jacs.3c00462 |
|
[8] |
(a) Tanaka, K. Chem. Asian J. 2009, 4, 508.
doi: 10.1002/asia.v4:4 |
(b) Xu, K.; Li, W.; Zhu, S.; Zhu, T. Angew. Chem., Int. Ed. 2019, 58, 17625.
doi: 10.1002/anie.v58.49 |
|
(c) Zhao, Q.; Peng, C.; Wang, Y.-T.; Zhan, G.; Han, B. Org. Chem. Front. 2021, 8, 2772.
doi: 10.1039/D1QO00307K |
|
(d) Schmidt, T. A.; Sparr, C. Acc. Chem. Res. 2021, 54, 2764.
doi: 10.1021/acs.accounts.1c00178 |
|
(e) Teng, F.; Yu, T.; Peng, Y.; Hu, W.; Hu, H.; He, Y.; Luo, S.; Zhu, Q. J. Am. Chem. Soc. 2021, 143, 2722.
doi: 10.1021/jacs.1c00640 |
|
(f) Zhang, C.-L.; Gao, Y.-Y.; Wang, H.-Y.; Zhou, B.-A.; Ye, S. Angew. Chem., Int. Ed. 2021, 60, 13918.
doi: 10.1002/anie.v60.25 |
|
(g) Zhang, P.; Xu, Q.; Wang, X.-M.; Feng, J.; Lu, C.-J.; Li, Y.; Liu, R.-R. Angew. Chem., Int. Ed. 2022, 61, e202212101.
|
|
(h) Sun, H.-R.; Sharif, A.; Chen, J.; Zhou, L. Chem.-Eur. J. 2023, 29, e202300183.
|
|
(i) Chen, Y.-B.; Liu, L.-G.; Chen, C.-M.; Liu, Y.-X.; Zhou, B.; Lu, X.; Xu, Z.; Ye, L.-W. Angew. Chem., Int. Ed. 2023, 62, e202303670.
|
|
[9] |
(a) Qi, L.-W.; Mao, J.-H.; Zhang, J.; Tan, B. Nat. Chem. 2018, 10, 58.
doi: 10.1038/nchem.2866 |
(b) Bai, H.-Y.; Tan, F.-X.; Liu, T.-Q.; Zhu, G.-D.; Tian, J.-M.; Ding, T.-M.; Chen, Z.-M.; Zhang, S.-Y. Nat. Commun. 2019, 10, 3063.
doi: 10.1038/s41467-019-10858-x |
|
(c) Li, H.; Yan, X.; Zhang, J.; Guo, W.; Jiang, J.; Wang, J. Angew. Chem., Int. Ed. 2019, 58, 6732.
doi: 10.1002/anie.v58.20 |
|
(d) Tian, M.; Bai, D.; Zheng, G.; Chang, J.; Li, X. J. Am. Chem. Soc. 2019, 141, 9527.
doi: 10.1021/jacs.9b04711 |
|
(e) Wang, Q.; Gu, Q.; You, S.-L. Acta Chim. Sinica 2019, 77, 690 (in Chinese).
doi: 10.6023/A19060222 |
|
(王强, 顾庆, 游书力, 化学学报, 2019, 77, 690.)
|
|
(f) Nguyen, Q.-H.; Guo, S.-M.; Royal, T.; Baudoin, O.; Cramer, N. J. Am. Chem. Soc. 2020, 142, 2161.
doi: 10.1021/jacs.9b12299 |
|
(g) Wang, Q.; Zhang, W.-W.; Song, H.; Wang, J.; Zheng, C.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2020, 142, 15678.
doi: 10.1021/jacs.0c08205 |
|
(h) Liu, Z.-S.; Xie, P.-P.; Hua, Y.; Wu, C.; Ma, Y.; Chen, J.; Cheng, H.-G.; Hong, X.; Zhou, Q. Chem 2021, 7, 1917.
doi: 10.1016/j.chempr.2021.04.005 |
|
(i) Liu, C.-X.; Zhang, W.-W.; Yin, S.-Y.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2021, 143, 14025.
doi: 10.1021/jacs.1c07635 |
|
(j) Kumar, A.; Sasai, H.; Takizawa, S. Acc. Chem. Res. 2022, 55, 2949.
doi: 10.1021/acs.accounts.2c00545 |
|
(k) Liao, G.; Zhang, T.; Jin, L.; Wang, B.-J.; Xu, C.-K.; Lan, Y.; Zhao, Y.; Shi, B.-F. Angew. Chem., Int. Ed. 2022, 61, e202115221.
|
|
[10] |
(a) Zhao, K.; Duan, L.; Xu, S.; Jiang, J.; Fu, Y.; Gu, Z. Chem 2018, 4, 599.
doi: 10.1016/j.chempr.2018.01.017 |
(b) Deng, R.; Xi, J.; Li, Q.; Gu, Z. Chem 2019, 5, 1834.
doi: 10.1016/j.chempr.2019.04.008 |
|
(c) Wang, G.; Shi, Q.; Hu, W.; Chen, T.; Guo, Y.; Hu, Z.; Gong, M.; Guo, J.; Fu, Z.; Huang, W. Nat. Commun. 2020, 11, 946.
doi: 10.1038/s41467-020-14799-8 |
|
(d) Zhang, X.; Zhao, K.; Li, N.; Yu, J.; Gong, L.-Z.; Gu, Z. Angew. Chem., Int. Ed. 2020, 59, 19899.
doi: 10.1002/anie.v59.45 |
|
(e) Zhang, J.; Sun, T.; Zhang, Z.; Cao, H.; Bai, Z.; Cao, Z.-C. J. Am. Chem. Soc. 2021, 143, 18380.
doi: 10.1021/jacs.1c09797 |
|
(f) Wang, G.; Huang, J.; Zhang, J.; Fu, Z. Org. Chem. Front. 2022, 9, 4507.
doi: 10.1039/D2QO00946C |
|
(g) Zhang, X.; Zhao, K.; Gu, Z. Acc. Chem. Res. 2022, 55, 1620.
doi: 10.1021/acs.accounts.2c00175 |
|
(h) Pang, L.; Sun, Q.; Huang, Z.; Li, G.; Liu, J.; Guo, J.; Yao, C.; Yu, J.; Li, Q. Angew. Chem., Int. Ed. 2022, 61, e202211710.
|
|
[11] |
Singh, M. S. In Reactive Intermediates in Organic Chemistry: Structure, Mechanism, and Reactions, Wiley-VCH, Weinheim, Germany, 2014.
|
[12] |
Qin, W.; Liu, Y.; Yan, H. Acc. Chem. Res. 2022, 55, 2780.
doi: 10.1021/acs.accounts.2c00486 |
[13] |
(a) Beppu, S.; Arae, S.; Furusawa, M.; Arita, K.; Fujimoto, H.; Sumimoto, M.; Imahori, T.; Igawa, K.; Tomooka, K.; Irie, R. Eur. J. Org. Chem. 2017, 6914.
|
(b) Arae, S.; Beppu, S.; Kawatsu, T.; Igawa, K.; Tomooka, K.; Irie, R. Org. Lett. 2018, 20, 4796.
doi: 10.1021/acs.orglett.8b01945 |
|
[14] |
(a) Wu, X.; Xue, L.; Li, D.; Jia, S.; Ao, J.; Deng, J.; Yan, H. Angew. Chem., Int. Ed. 2017, 56, 13722.
doi: 10.1002/anie.v56.44 |
(b) Liu, Y.; Wu, X.; Li, S.; Xue, L.; Shan, C.; Zhao, Z.; Yan, H. Angew. Chem., Int. Ed. 2018, 57, 649.
|
|
(c) Jia, S.; Chen, Z.; Zhang, N.; Tan, Y.; Liu, Y.; Deng, J.; Yan, H. J. Am. Chem. Soc. 2018, 140, 7056.
doi: 10.1021/jacs.8b03211 |
|
(d) Tan, Y.; Jia, S.; Hu, F.; Liu, Y.; Peng, L.; Li, D.; Yan, H. J. Am. Chem. Soc. 2018, 140, 16893.
doi: 10.1021/jacs.8b09893 |
|
(e) Peng, L.; Xu, D.; Yang, X.; Tang, J.; Feng, X.; Zhang, S.-L.; Yan, H. Angew. Chem., Int. Ed. 2019, 58, 216.
doi: 10.1002/anie.v58.1 |
|
(f) Huang, S.; Wen, H.; Tian, Y.; Wang, P.; Qin, W.; Yan, H. Angew. Chem., Int. Ed. 2021, 60, 21486.
doi: 10.1002/anie.v60.39 |
|
(g) Li, K.; Huang, S.; Liu, T.; Jia, S.; Yan, H. J. Am. Chem. Soc. 2022, 144, 7374.
doi: 10.1021/jacs.2c01106 |
|
(h) Chang, Y.; Xie, C.; Liu, H.; Huang, S.; Wang, P.; Qin, W.; Yan, H. Nat. Commun. 2022, 13, 1933.
doi: 10.1038/s41467-022-29557-1 |
|
(i) Jia, S.; Tian, Y.; Li, X.; Wang, P.; Lan, Y.; Yan, H. Angew. Chem., Int. Ed. 2022, 61, e202206501.
|
|
(j) Liu, H.; Li, K.; Huang, S.; Yan, H. Angew. Chem., Int. Ed. 2022, 61, e202117063.
|
|
[15] |
Wang, Y.-B.; Yu, P.; Zhou, Z.-P.; Zhang, J.; Wang, J.; Luo, S.-H.; Gu, Q.-S.; Houk, K. N.; Tan, B. Nat. Catal. 2019, 2, 504.
doi: 10.1038/s41929-019-0278-7 |
[16] |
(a) Huang, A.; Zhang, L.; Li, D.; Liu, Y.; Yan, H.; Li, W. Org. Lett. 2019, 21, 95.
doi: 10.1021/acs.orglett.8b03492 |
(b) Zhang, W.; Wei, S.; Wang, W.; Qu, J.; Wang, B. Chem. Commun. 2021, 57, 6550.
doi: 10.1039/D1CC01123E |
|
(c) Zhang, C.; Tang, Z.; Qiu, Y.; Tang, J.; Ye, S.; Li, Z.; Wu, J. Chem. Catal. 2022, 2, 164.
|
|
(d) Zhang, W.; Song, R.; Yang, D.; Lv, J. J. Org. Chem. 2022, 87, 2853.
doi: 10.1021/acs.joc.1c02750 |
|
(e) Gou, B.-B.; Tang, Y.; Lin, Y.-H.; Yu, L.; Jian, Q.-S.; Sun, H.-R.; Chen, J.; Zhou, L. Angew. Chem., Int. Ed. 2022, 61, e202208174.
|
|
(f) Tian, Y.; Wu, F.; Jia, S.; Gong, X.; Mao, H.; Wang, P.; Qin, W.; Yan, H. Org. Lett. 2022, 24, 5073.
doi: 10.1021/acs.orglett.2c01842 |
|
(g) Cai, B; Cui, Y.; Zhou, J.; Wang, Y.-B.; Yang, L.; Tan, B.; Wang, J. Angew. Chem., Int. Ed. 2023, 62, e202215820.
|
|
(h) Woldegiorgis, A. G.; Gu, H.; Lin, X. Org. Lett. 2023, 25, 2068.
doi: 10.1021/acs.orglett.3c00425 |
|
[17] |
(a) Zheng, S.-C.; Wu, S.; Zhou, Q.; Chung, L. W.; Ye, L.; Tan, B. Nat. Commun. 2017, 8, 15238.
doi: 10.1038/ncomms15238 |
(b) Jin, L.; Yao, Q.-J.; Xie, P.-P.; Li, Y.; Zhan, B.-B.; Han, Y.-Q.; Hong, X.; Shi, B.-F. Chem 2020, 6, 497.
doi: 10.1016/j.chempr.2019.12.011 |
|
(c) Song, H.; Li, Y.; Yao, Q.-J.; Jin, L.; Liu, L.; Liu, Y.-H.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, 59, 6576.
doi: 10.1002/anie.v59.16 |
|
(d) Wang, J.; Qi, X.; Min, X.-L.; Yi, W.; Liu, P.; He, Y. J. Am. Chem. Soc. 2021, 143, 10686.
doi: 10.1021/jacs.1c04400 |
|
(e) Jin, L.; Zhang, P.; Li, Y.; Yu, X.; Shi, B.-F. J. Am. Chem. Soc. 2021, 143, 12335.
doi: 10.1021/jacs.1c06236 |
|
(f) Feng, J.; Gu, Z. SynOpen 2021, 5, 68.
doi: 10.1055/s-0040-1706028 |
|
(g) Yan, J.-L.; Maiti, R.; Ren, S.-C.; Tian, W.; Li, T.; Xu, J.; Mondal, B.; Jin, Z.; Chi, Y. R. Nat. Commun. 2022, 13, 84.
doi: 10.1038/s41467-021-27771-x |
|
(h) Qiu, S.-Q.; Chen, Y.; Peng, S.-J.; He, S.-J.; Cheng, J. K.; Wang, Y.-B.; Xiang, S.-H.; Song, J.; Yu, P.; Zhang, J.; Tan, B. Angew. Chem., Int. Ed. 2022, 61, e202211211.
|
|
(i) Wu, S.; Xiang, S.-H.; Cheng, J. K.; Tan, B. Tetrahedron Chem. 2022, 1, 100009.
doi: 10.1016/j.tchem.2022.100009 |
|
(j) Li, Z.-H.; Li, Q.-Z.; Bai, H.-Y.; Zhang, S.-Y. Chem. Catal. 2023, 3, 100594.
|
|
[18] |
Li, Q.-Z.; Lian, P.-F.; Tan, F.-X.; Zhu, G.-D.; Chen, C.; Hao, Y.; Jiang, W.; Wang, X.-H.; Zhou, J.; Zhang, S.-Y. Org. Lett. 2020, 22, 2448.
doi: 10.1021/acs.orglett.0c00659 |
[19] |
(a) Masdeu-Bultó, A. M.; Diéguez, M.; Martin, E.; Gómez, M. Coord. Chem. Rev. 2003, 242, 159.
doi: 10.1016/S0010-8545(03)00106-1 |
(b) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.
doi: 10.2174/1568026615666150915111741 |
|
(c) Otocka, S; Kwiatkowska, M.; Madalińska, L.; Kiełbasiński, P. Chem. Rev. 2017, 117, 4147.
doi: 10.1021/acs.chemrev.6b00517 |
|
(d) Scott, K. A.; Njardarson, J. T. Top. Curr. Chem. 2018, 376, 5.
|
|
[20] |
(a) Matviitsuk, A.; Panger, J. L.; Denmark, S. E. Angew. Chem., nt. Ed. 2020, 59, 19796.
|
(b) Jiang, Q.; Zhao, X. Chin. J. Org. Chem. 2021, 41, 443 (in Chinese).
|
|
(姜权彬, 赵晓丹, 有机化学, 2021, 41, 443.)
|
|
(c) Zhu, D.; Chen, Z.-M. Chin. J. Org. Chem. 2022, 42, 3015 (in Chinese).
doi: 10.6023/cjoc202208032 |
|
(朱登, 陈志敏, 有机化学, 2022, 42, 3015.)
|
|
(d) Liao, L.; Zhao, X. Acc. Chem. Res. 2022, 55, 2439.
doi: 10.1021/acs.accounts.2c00201 |
|
[21] |
Liang, Y.; Ji, J.; Zhang, X.; Jiang, Q.; Luo, J.; Zhao, X. Angew. Chem., Int. Ed. 2020, 59, 4959.
doi: 10.1002/anie.v59.12 |
[22] |
(a) Biffinger, J. C.; Kim, H. W.; DiMagno, S. G. ChemBioChem 2004, 5, 622.
doi: 10.1002/cbic.v5:5 |
(b) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827.
doi: 10.1021/cr040075b |
|
(c) Manteau, B.; Pazenok, S.; Vors, J.-P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140.
doi: 10.1016/j.jfluchem.2009.09.009 |
|
(d) Landelle, G.; Panossian, A. Curr. Top. Med. Chem. 2014, 14, 941
doi: 10.2174/1568026614666140202210016 |
|
[23] |
(a) Liu, Y. E.; Lu, Z.; Li, B.; Tian, J.; Liu, F.; Zhao, J.; Hou, C.; Li, Y.; Niu, L.; Zhao, B. J. Am. Chem. Soc. 2016, 138, 10730.
doi: 10.1021/jacs.6b03930 |
(b) Wang, Q.; Cai, Z.-J.; Liu, C.-X.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2019, 141, 9504.
doi: 10.1021/jacs.9b03862 |
|
[24] |
Zhang, L.; Shen, J.; Wu, S.; Zhong, G.; Wang, Y.-B.; Tan, B. Angew. Chem., Int. Ed. 2020, 59, 23077.
doi: 10.1002/anie.v59.51 |
[25] |
Tan, T.-D.; Qian, G.-L.; Su, H.-Z.; Zhu, L.-J.; Ye, L.-W.; Zhou, B.; Hong, X.; Qian, P.-C. Sci. Adv. 2023, 9, eadg4648.
|
[1] | 杨爽, 房新强. 氮杂环卡宾催化实现的动力学拆分近期研究进展[J]. 有机化学, 2024, 44(2): 448-480. |
[2] | 陈宛婷, 钟雄威, 邢佳乐, 吴昌书, 高杨. C—N轴手性化合物的不对称催化合成研究进展[J]. 有机化学, 2024, 44(2): 349-377. |
[3] | 程春霞, 吴露平, 沙风, 伍新燕. 手性叔膦-酰胺不对称催化香豆素与Morita-Baylis-Hillman碳酸酯之间的插烯烯丙基烷基化反应[J]. 有机化学, 2023, 43(9): 3188-3195. |
[4] | 罗诚, 尹艳丽, 江智勇. P-手性膦氧化物的不对称合成研究进展[J]. 有机化学, 2023, 43(6): 1963-1976. |
[5] | 王海清, 杨爽, 张宇辰, 石枫. 邻羟基苄醇参与的催化不对称反应研究进展[J]. 有机化学, 2023, 43(3): 974-999. |
[6] | 曹伟地, 刘小华. 不对称催化质子化构建α-叔碳羰基化合物研究进展[J]. 有机化学, 2023, 43(3): 961-973. |
[7] | 方思强, 刘赞娇, 王天利. Atherton-Todd反应的研究进展[J]. 有机化学, 2023, 43(3): 1069-1083. |
[8] | 曾燕, 叶飞. 不对称催化构建硅立体中心化合物的新反应体系研究进展[J]. 有机化学, 2023, 43(10): 3388-3413. |
[9] | 赵佳怡, 葛怡聪, 何川. 不对称催化Si—H/X—H脱氢偶联构筑硅中心手性[J]. 有机化学, 2023, 43(10): 3352-3366. |
[10] | 代增进, 张绪穆, 殷勤. 铵盐为胺源的不对称还原胺化反应研究进展[J]. 有机化学, 2022, 42(8): 2261-2274. |
[11] | 李晖, 殷亮. 铜催化的直接型插烯反应研究进展[J]. 有机化学, 2022, 42(6): 1573-1585. |
[12] | 吴逾诸, 申盼盼, 段文增, 马玉道. 卡宾催化对亚甲基苯醌的不对称硼化反应的研究[J]. 有机化学, 2022, 42(5): 1483-1492. |
[13] | 徐萌萌, 蔡泉. 2-吡喃酮的催化不对称Diels-Alder反应研究进展[J]. 有机化学, 2022, 42(3): 698-713. |
[14] | 陈运荣, 刘炜, 杨晓瑜. 叔醇的动力学拆分研究进展[J]. 有机化学, 2022, 42(3): 679-697. |
[15] | 闫辉, 张曼, 李琳, 胡腾, 杨武林. 手性螺环缩酮化合物的不对称催化合成研究进展[J]. 有机化学, 2022, 42(11): 3640-3657. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||