综述与进展

β-硝基苯乙烯参与的反应研究进展

  • 李进京 ,
  • 孙立娇 ,
  • 赵岩 ,
  • 史成阳
展开
  • 佳木斯大学药学院 黑龙江佳木斯 154007

收稿日期: 2023-06-12

  修回日期: 2023-07-15

  网络出版日期: 2023-08-15

基金资助

黑龙江省自然科学基金(LH2022H094); 黑龙江省属高校基本科研业务费(2021-KYYWF-0582)

Research Progress on Reactions Involving β-Nitrostyrene

  • Jinjing Li ,
  • Lijiao Sun ,
  • Yan Zhao ,
  • Chengyang Shi
Expand
  • College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007

Received date: 2023-06-12

  Revised date: 2023-07-15

  Online published: 2023-08-15

Supported by

Natural Science Foundation of Heilongjiang Province(LH2022H094); Basic Research Project of Heilongjiang Basic Scientific Research Operating Expenses(2021-KYYWF-0582)

摘要

β-硝基苯乙烯具有多种生物活性, 同时也是重要的有机合成中间体, 其化学性质活泼, 可参与多种化学反应, 受到科研人员的广泛关注. 对近年来硝基苯乙烯类化合物参与的反应进行总结, 根据其反应作用位点分为脱硝基反应和碳碳双键参与的反应, 期望为以β-硝基苯乙烯类化合物为底物的新反应提供参考.

本文引用格式

李进京 , 孙立娇 , 赵岩 , 史成阳 . β-硝基苯乙烯参与的反应研究进展[J]. 有机化学, 2023 , 43(12) : 4168 -4187 . DOI: 10.6023/cjoc202306008

Abstract

β-Nitrostyrene has a variety of biological activities and is also an important intermediate in organic synthesis, which can participate in a variety of chemical reactions due to its active chemical properties, and has attracted extensive attention from researchers. The reactions involving nitrostyrene compounds in recent years are summarized, and the reaction are divided into denitrification reactions and carbon-carbon double bonds according to reaction sites, expecting to provide a reference for new reactions with β-nitrostyrene compounds as substrates.

参考文献

[1]
Kim J. H.; Kim J. H.; Lee G. E.; Lee J. E.; Chung I. K. Mol. Pharmacol. 2003, 63, 1117.
[2]
Milhazes N.; Calheiros R.; Marques M. P. M.; Garrido J.; Cordeiro M. N. D. S.; Rodrigues C.; Quinteira S.; Carla N.; Peixe L.; Borges F. Bioorg. Med. Chem. 2006, 14, 4078.
[3]
Ramzan A.; Padder S. A.; Masoodi K. Z.; Shaf S.; Tahir I.; Rehman R. U.; Rehman R.; Shah A. H. Eur. J. Med. Chem. 2022, 240, 114609.
[4]
Kaap S.; Quentin I.; Tamiru D.; Shaheen M.; Eger K.; Steinfelder H. J. Biochem. Pharmacol. 2003, 65, 603.
[5]
Byrne A. J.; Bright S. A.; Fayne D.; McKeown G. P.; McCabe T.; Twamley B.; Williams C.; Meegan M. J. Med. Chem. 2018, 14, 181.
[6]
Muruganantham R.; Mobin S. M.; Namboothiri I. N. N. Org. Lett. 2007, 9, 1125.
[7]
Zhong C.; Liao T.; Tuguldur O.; Shi X.-D. Org. Lett. 2010, 12, 2064.
[8]
Dupeyre G.; Lemoine P.; Ainseba N.; Michel S.; Cachet X. Org. Biomol. Chem. 2011, 9, 7780.
[9]
Jang Y. J.; Shih Y. K.; Liu J.-Y.; Kuo W.-Y.; Yao C.-F. Chem.- Eur. J. 2003, 9, 2123.
[10]
Kiyokawa K.; Nagata T.; Hayakawa J.; Minakata S. Chem.-Eur. J. 2015, 21, 1280.
[11]
Kashanna J.; Nagaraju K.; Swamy K. C. K. Tetrahedron Lett. 2016, 57, 1576.
[12]
Zheng Y.-S.; Ghazvini Zadeh E. H.; Yuan Y. Eur. J. Org. Chem. 2016, 2016, 2115.
[13]
Kumar T.; Mane V.; Namboothiri I. N. N. Org. Lett. 2017, 19, 4283.
[14]
Saha A.; Wu C.-M.; Peng R.; Koodali R.; Banerjee S. Eur. J. Org. Chem. 2019, 2019, 104.
[15]
Midya S. P.; Mondal S.; Islam A. S. M.; Rashid A.; Mondal S.; Paul A.; Ghosh P. Org. Lett. 2022, 24, 4438.
[16]
Tang M.; Zhang W.; Kong Y.-F. Org. Biomol. Chem. 2013, 11, 6250.
[17]
Santra S.; Bagdi A. K.; Majee A.; Hajra A. Adv. Synth. Catal. 2013, 355, 1065.
[18]
Kundu D.; Samim M.; Majee A.; Hajra A. Chem.-Asian J. 2011, 6, 406.
[19]
Xue S.-W.; Yao J.; Liu J.-M.; Wang L.-Z.; Liu X.-Y.; Wang C.-D. RSC Adv. 2016, 6, 1700.
[20]
Sathish M.; Chetna J.; Krishna N. H.; Shankaraiah N.; Alarifi A.; Kamal A. J. Org. Chem. 2016, 81, 2159.
[21]
Li D.-K.; Cai Q.; Zhou R.-R.; Wu Y.-D.; Wu A.-X. ChemistrySelect 2017, 2, 1048.
[22]
Kallitsakis M. G.; Tancini P. D.; Dixit M.; Mpourmpakis G.; Lykakis I. N. J. Org. Chem. 2018, 83, 1176.
[23]
Chen J.-J.; Chang D.; Xiao F.-H.; Deng G.-J. J. Org. Chem. 2019, 84, 568.
[24]
Karki B. S.; Devi L.; Pokhriyal A.; Kant R.; Rastogi N. Chem.- Asian J. 2019, 14, 4793.
[25]
Motornov V. A.; Tabolin A. A. Nelyubina Y. V.; Nenajdenko V. G.; Ioffe S. L. Org. Biomol. Chem. 2020, 18, 1436.
[26]
Gao F.; Bai R.-X.; Li M.-H.; Gu Y.-L. Green Chem. 2021, 23, 7499.
[27]
Quan X.-J.; Ren Z.-H.; Wang Y.-Y.; Guan Z.-H. Org. Lett. 2014, 16, 5728.
[28]
Saadat M.; Azizi N.; Qomi M. J. Iran. Chem. Soc. 2021, 18, 2057.
[29]
Payra S.; Saha A.; Banerjee S. ChemCatChem 2018, 10, 5468.
[30]
Jiang R.-H.; Sun H.-B.; Li S.; Zhan K.; Zhou J.-J.; Liu L.; Zhang K.; Liang Q.-L.; Chen Z. P. Synth. Commun. 2018, 48, 2652.
[31]
Autade S. B.; Akamanchi K. G. Synth. Commun. 2019, 49, 1532.
[32]
Hu Q.-Q.; Liu Y.; Deng X.-C.; Li Y.-G.; Chen Y.-F. Adv. Synth. Catal. 2016, 358, 1689.
[33]
Zhang H.; Dong D.-Q.; Wang Z.-L. Synthesis 2015, 48, 131.
[34]
Yadav C.; Maka V. K.; Payra S.; Moorthy J. N. ACS Appl. Polym. 2020, 2, 3084.
[35]
Ma J.-L.; Peng X.-L.; Zhong X.-L.; Sun R.-C. New J. Chem. 2018, 42, 9140.
[36]
Sharma P.; Kumar N. P.; Senwar K. R.; Forero-Doria O.; Nachtigall F. M.; Santos L. S.; Shankaraiah N. J. Braz. Chem. Soc. 2017, 28, 589.
[37]
Li D.; Liu L.; Tian Y.; Ai Y.-J.; Tang Z.-K.; Sun H.-B.; Zhang G. Tetrahedron 2017, 73, 3959.
[38]
Alves T. M. F.; Jardim G. A. M.; Ferreira M. A. B. RSC Adv. 2021, 11, 10336.
[39]
Singh S.; Srivastava A.; Mobin S. M.; Samanta S. RSC Adv. 2015, 5, 5010.
[40]
Ghosh M.; Hajra A. Eur. J. Org. Chem. 2015, 2015, 7836.
[41]
Ghosh M.; Mishra S.; Hajra A. J. Org. Chem. 2015, 80, 5364.
[42]
Ghosh M.; Santra S.; Mondal P.; Kundu D.; Hajra A. J. Org. Chem. 2015, 10, 2525.
[43]
Kumar T.; Satam N.; Namboothiri I. N. N. Eur. J. Org. Chem. 2016, 2016, 3316.
[44]
Bhattacharjee S.; Khan A. T. Tetrahedron Lett. 2016, 57, 1831.
[45]
Yu S.-W.; Zhao S.-H.; Chen H.; Xu X.-Y.; Yuan W.-C.; Zhang X.-M. ChemistrySelect 2018, 3, 4827.
[46]
Mo Y.-R.; Liu S.-Y.; Liu Y.-Y.; Ye L.; Shi Z.-C.; Zhao Z.-G.; Li X.-F. Chem. Commun. 2019, 55, 6285.
[47]
Hajra A.; Jana S.; Chakraborty A.; Shirinian V. Z. Adv. Synth. Catal. 2018, 360, 2402.
[48]
Keshari T.; Kapoorr R.; Yadav L. D. S. Eur. J. Org. Chem. 2016, 2016, 2695.
[49]
Kumar S.; Singh R.; Singh K. N. Asian J. Org. Chem. 2018, 7, 359.
[50]
Aegurla B.; Peddinti R. K. Asian J. Org. Chem. 2018, 7, 946.
[51]
Chen D.-M.; Sun Y.-Y.; Dong D.-Q.; Han Q.-Q.; Wang Z.-L. Chin. J. Org. Chem. 2020, 40, 4267. (in Chinese)
[51]
(陈德茂, 孙媛媛, 董道青, 韩晴晴, 王祖利, 有机化学, 2020, 40, 4267.)
[52]
Zheng C.-G.; Huang S.; Liu Y.; Jiang C.; Zhang W.; Fang G.; Hong J.-Q. Org. Lett. 2020, 22, 4868.
[53]
Kapoor R.; Chawla R.; Yadav L. D. S. Tetrahedron Lett. 2020, 61, 152505.
[54]
Chawla R.; Jaiswal S.; Duttaa P. K.; Yadav L. D. S. Org. Biomol. Chem. 2021, 19, 6487.
[55]
Ma J.-J.; Yi W.-B.; Lu G.-P.; Cai C. Adv. Synth. Catal. 2015, 357, 3447.
[56]
Zhang N.; Quan Z.-J.; Wang X.-C. Adv. Synth. Catal. 2016, 358, 3179.
[57]
Zhang N.; Quan Z.-J.; Zhang Z.; Da Y.-X.; Wang X.-C. Chem. Commun. 2016, 52, 14234.
[58]
Huang P.; Li Y.-M.; Fu X.-M.; Zhang R.; Jin K.; Wang W.-X.; Duan C.-Y. Tetrahedron Lett. 2016, 57, 4705.
[59]
Zhang S.-Y.; Li Y.-M.; Wang J.-A.; Hao X.-Y.; Jin K.; Zhang R.; Duan C.-Y. Tetrahedron Lett. 2020, 61, 151721.
[60]
Tripathi S.; Kapoor R.; Yadav L. D. Adv. Synth. Catal. 2018, 360, 1407.
[61]
Ferko B.; Mar?eková M.; Detková K. R.; Doháňo?ová J.; Berke? D.; Jakubec P. Org. Lett. 2021, 83, 8705.
[62]
Aldoshin A. S.; Tabolin A. A.; Ioffe S. L.; Nenajdenko V. G. Eur. J. Org. Chem. 2019, 2019, 4384.
[63]
Shan X.-J.; Gao P.; Zhang S.-W.; Jia X.-D.; Yuan Y. ChemistrySelect 2022, 7, e202200425.
[64]
Xue J.-F.; Zhou S.-F.; Liu Y.-Y.; Pan X.-Q.; Zou J.-P.; Asekun O.-T. Org. Biomol. Chem. 2015, 13, 4896.
[65]
Yuan J.-W.; Yang L.-R.; Mao P.; Qu L.-B. RSC Adv. 2016, 6, 87058.
[66]
Yuan J.-W.; Li Y.-Z.; Mai W.-P.; Yang L.-R.; Qu L.-B. Tetrahedron 2016, 72, 3084.
[67]
Ma L.; Shang S.-J.; Yuan H.; Zhang Y.; Zeng Z.-G.; Chen Y.-F. Tetrahedron Lett. 2021, 87, 153530.
[68]
Sun S.; Quan Z.-J.; Wang X.-C. RSC Adv. 2015, 5, 84574.
[69]
Advani J. H.; Ravi K.; Naikwadi D. R.; Bajaj H. C.; Gawandec M. B.; Biradar A. V. Dalton Trans. 2020, 49, 10431.
[70]
Yadav A. K.; Singh K. N. New J. Chem. 2017, 41, 14914.
[71]
Paul B.; Shee S.; Chakrabarti K.; Kundu S. ChemSusChem 2017, 10, 2370.
[72]
Tripathi S.; Yadav L. D. S. New J. Chem. 2018, 42, 3765.
[73]
Zou H.; Hu C.-F.; Chen K.-H.; Xiao G.-S.; Peng X.-H. Synlett 2018, 29, 2181.
[74]
Sakthipriya P.; Ananthi N. J. Porphyrins Phthalocyanines 2016, 20, 730.
[75]
Hemmat K.; Nasseri M. A.; Allahresani A. Appl. Organomet. Chem. 2019, 33, e4937.
[76]
Hosseini-Sarvari M.; Akrami Z. J. Organomet. Chem. 2020, 928, 121549.
[77]
He Q.; Xu Z.-H.; Jiang D.-H.; Ai W.-S.; Shi R.-H.; Qian S.; Wang Z.-Y. RSC Adv. 2014, 4, 8671.
[78]
Payra S.; Saha A.; Banerjee S. RSC Adv. 2016, 6, 52495.
[79]
Kerr W. J.; Mudd R. J.; Brown J. A. Chem.-Eur. J. 2016, 22, 4738.
[80]
Xu D.; Chen Y.; Liu C.-M.; Xu J.-X.; Yang Z.-H. Green Chem. 2021, 23, 6050.
[81]
Faverio C.; Boselli M. F.; Gonzalez P. C.; Puglisi A.; Benaglia M. Beilstein J. Org. Chem. 2021, 17, 1041.
[82]
Yuan S.-F.; Luyang H.-W.; Lei A.; Wan X.-K.; Li J.-J.; Wang Q.-M. Chem. Commun. 2021, 57, 4315.
[83]
Kitanosono T.; Zhu L.; Liu C.; Xu P.-Y.; Kobayashi S. J. Am. Chem. Soc. 2015, 137, 15422.
[84]
Payra S.; Saha A.; Banerjee S. RSC Adv. 2016, 6, 95951.
[85]
Scatena G. S.; de la Torre A. F.; Cass Q. B.; Rivera D. G.; Paixao M. W. ChemCatChem 2014, 6, 3208.
[86]
Szcze?niak P.; Staszewska‐Krajewska O.; Furman B.; M?ynarski J. ChemistrySelect 2017, 2, 2670.
[87]
Biewenga L.; Saravanan T.; Kunzendorf A.; Meer J. Pijning T.; Tepper P. G.; Merkerk R.; Charnock S. J.; Thunnissen A. W. H.; Poelarends G. J. ACS Catal. 2019, 9, 1503.
[88]
Koshino S.; Hattori S.; Hasegawa S.; Haraguchi N.; Yamamoto T.; Suginome M.; Uozumi Y.; Hayashi Y. Bull. Chem. Soc. Jpn. 2021, 94, 790.
[89]
Lizandara-Pueyo C.; Fan X.; Ayats C.; Pericas M. A. J. Catal. 2021, 393, 107.
[90]
Han X.-Y.; Chen F.-F.; Ye C.; Wang Y.-J. Synlett 2017, 28, 989.
[91]
Shin M.; Gu M.-J.; Lim S. S.; Kim M.; Lee J.; Jin H.; Jang Y. H.; Jung B. Eur. J. Org. Chem. 2018, 2018, 3122.
[92]
Soeta T.; Hatanaka Y.; Ishizaka T.; Ukaji Y. Tetrahedron 2018, 74, 4601.
[93]
Dell'Aera M.; Perna F. M.; Vitale P.; Altomare A.; Palmieri A.; Maddock L. C. H.; Bole L. J.; Kennedy A. R.; Hevia E.; Capriati V. Chem.-Eur. J. 2020, 26, 8742.
[94]
Sheikhi E.; Rezaei N.; Castilla A.; Sanz-Marco A.; Vila C.; Munoz M. C.; Pedro J. R.; Blay G. Eur. J. Org. Chem. 2021, 2021, 5284.
[95]
Deau E.; Foll A. L.; Fouache C.; Corrot E.; Bailly L.; Levacher V.; Marchand P.; Querniard F.; Bischoff L.; Brière J. Chem. Commun. 2021, 57, 8348.
[96]
Liu L.; Zhang-Negrerie D.; Du Y.-F.; Zhao K. Org. Lett. 2014, 16, 436.
[97]
Kumar V.; Awasthi A.; Metya A.; Khan T. J. Org. Chem. 2019, 84, 11581.
[98]
Dong X.-D.; Tang Z.-S.; Ye L.; Shi Z.-C.; Zhao Z.-G.; Li X.-F. J. Org. Chem. 2020, 85, 11607.
[99]
Dong X.-D.; Wang W.; Li H.; Xu Q.-Y.; Ye L.; Li X.-Y.; Zhao Z.-G.; Li X.-F. Org. Chem. Front. 2021, 8, 3260.
[100]
Ni Q.-J.; Wang X.-Y.; Zeng D.; Wu Q.-L.; Song X.-X. Org. Lett. 2021, 23, 2273.
[101]
McNabola N.; O’Connor C. J.; Roydhouse M. D.; Wallb M. D.; Southern J. M. Tetrahedron 2015, 71, 4598.
[102]
Du J.-G.; Tao M.-L.; Zhang W.-Q. ACS Sustainable Chem. Eng. 2016, 4, 4296.
[103]
Meninno S.; Volpe C.; Sala G. D.; Capobianco A.; Lattanzi A. Beilstein J. Org. Chem. 2016, 12, 643.
[104]
Nagaraju S.; Sathish K.; Satyanarayana N.; Paplal B.; Kashinath D. J. Heterocycl. Chem. 2019, 57, 469.
[105]
Zhu X.-Y.; Lv M.-H.; Zhao Y.-N.; Lan L.-Y.; Li W.-Z.; Xiao L.-J. RSC Adv. 2018, 8, 34000.
[106]
Wang S.-Z.; Guo Z.-J.; Chen S.-Q.; Jiang Y.; Zhang F.; Liu X.-Y.; Chen W.-P.; Sheng C.-Q. Chem.-Eur. J. 2018, 24, 62.
文章导航

/