研究论文

芳基乙烯基硅烷与芳基卤代物的Hiyama偶联反应

  • 马伟源 ,
  • 戴惠芳 ,
  • 亢少林 ,
  • 张天麟 ,
  • 舒兴中
展开
  • a 兰州大学功能有机分子化学国家重点实验室 兰州 73000
    b 复旦大学药学院 上海 201203
† 共同第一作者

收稿日期: 2023-06-28

  修回日期: 2023-07-23

  网络出版日期: 2023-08-15

基金资助

国家自然科学基金(22071084); 国家自然科学基金(22271127); 中央高校基本科研业务费专项资金(lzujbky-2022-ey01)

Hiyama Cross-Coupling Reaction of Aryl Vinylsilanes and Aryl Halides

  • Wei-Yuan Ma ,
  • Huifang Dai ,
  • Shaolin Kang ,
  • Tianlin Zhang ,
  • Xing-Zhong Shu
Expand
  • a State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000
    b School of Pharmacy, Fudan University, Shanghai 201203
† These authors contributed equally to this work

Received date: 2023-06-28

  Revised date: 2023-07-23

  Online published: 2023-08-15

Supported by

National Natural Science Foundation of China(22071084); National Natural Science Foundation of China(22271127); Fundamental Research Funds for the Central Universities(lzujbky-2022-ey01)

摘要

Hiyama偶联反应已经发展成为一种构筑C—C键的常用方法, 尤其是在芳基-芳基和芳基-烯基偶联反应领域. Hiyama偶联反应通常需要使用R—SiF3、R—Si(OMe)3等活性高但稳定性差的有机硅试剂, 发展基于稳定硅烷的Hiyama偶联反应是该领域重要的研究方向. 报道了一类钯催化芳基乙烯基硅烷和芳基卤代物的交叉偶联反应, 利用芳基乙烯基硅烷实现芳基化反应. 反应具有较好的官能团兼容性, 为制备二芳基类化合物提供了一种简便高效的途径.

本文引用格式

马伟源 , 戴惠芳 , 亢少林 , 张天麟 , 舒兴中 . 芳基乙烯基硅烷与芳基卤代物的Hiyama偶联反应[J]. 有机化学, 2023 , 43(10) : 3614 -3622 . DOI: 10.6023/cjoc202306025

Abstract

The Hiyama coupling reaction has emerged as a wildly used method for the construction of C—C bonds, especially in the fields of aryl-aryl and aryl-alkenyl coupling reactions. In general, this protocol highly relies on reactive but unstable silicon reagents such as R—SiF3 and R—Si(OMe)3. The development of Hiyama coupling reaction involving stable organosilanes is in high demand. In this manuscript, a palladium-catalyzed cross-coupling reaction of aryl vinylsilanes and aryl halides is reported, leading to the formation of Ar—Ar bonds. The reaction has shown good functional group compatibility and offered convenient access to biaryl compounds.

参考文献

[1]
(a) Thomson R. H. The Chemistry of Natural Products, Blackie and Son, Glasgow, UK, 1985.
[1]
(b) Brunel J. M. Chem. Rev. 2005, 105, 857.
[1]
(c) Corbet J. P.; Mignani G. Chem. Rev. 2006, 106, 2651.
[2]
(a) Nakao Y.; Hiyama T. Chem. Soc. Rev. 2011, 40, 4893.
[2]
(b) Komiyama T.; Minami Y.; Hiyama T. ACS Catal. 2017, 7, 631.
[3]
(a) Chan T. H.; Fleming I. Synthesis 1979, 761.
[3]
(b) Denmark S. E.; Ambrosi A. Org. Process Res. Dev. 2015, 19, 982.
[4]
(a) Hiyama T.; Oestreich M. Organosilicon Chemistry: Novel Approaches and Reactions, Wiley-VCH, Weinheim, 2019.
[4]
(b) Denmark S. E.; Regens C. S. Acc. Chem. Res. 2008, 41, 1486.
[4]
(c) Sore H. F.; Galloway W. R. J. D.; Spring D. R. Chem. Soc. Rev. 2012, 41, 1845.
[4]
(d) Foubelo F.; Nájera C.; Yus M. Chem. Rec. 2016, 16, 2521.
[5]
(a) Minami Y.; Hiyama T. Chem.-Eur. J. 2019, 25, 391.
[5]
(b) Komiyama T.; Minami Y.; Hiyama T. Synlett 2017, 28,1873
[6]
(a) Duan J.; Wang K.; Xu G.-L.; Kang S.; Qi L.; Liu X.-Y.; Shu X.-Z. Angew. Chem., Int. Ed. 2020, 59, 23083.
[6]
(b) Duan J.; Wang Y.; Qi L.; Guo P.; Pang X.; Shu X.-Z. Org. Lett. 2021, 23, 7855.
[7]
(a) Itami K.; Nokami T.; Yoshida J.-I. J. Am. Chem. Soc. 2001, 123, 5600.
[7]
(b) Bergueiro J.; Montenegro J.; Cambeiro F.; Saá C.; López S. Chem.-Eur. J. 2012, 18, 4401.
[7]
(c) Hosoi K.; Nozaki K.; Hiyama T. Chem. Lett. 2002, 31, 138.
[7]
(d) Vitale M.; Prestat G.; Lopes D.; Madec D.; Kammerer C.; Poli G.; Girnita L. J. Org. Chem. 2008, 73, 5795.
[7]
(e) Lorion M. M.; Matt B.; Alves S.; Proust A.; Poli G.; Oble J.; Izzet G. Chem.-Eur. J. 2013, 19, 12607.
[7]
(f) Katayama H.; Nagao M.; Ozawa F.; Ikegami M.; Arai T. J. Org. Chem. 2006, 71, 2699.
[7]
(g) Anderson J. C.; Munday R. H. J. Org. Chem. 2004, 69, 8971.
[7]
(h) Pawley S. B.; Conner A. M.; Omer H. M.; Watson D. A. ACS Catal. 2022, 12, 13108.
[8]
(a) Grushin V. V.; Alper H. Chem. Rev. 1994, 94, 1047.
[8]
(b) Littke A. F.; Fu G. C. Angew. Chem., Int. Ed. 2002, 41, 4176.
[8]
(c) Yuen O. Y.; So C. M.; Man H. W.; Kwong F. Y. Chem.-Eur. J. 2016, 22, 6471.
[9]
Pierrat P.; Gros P.; Fort Y. Org. Lett. 2005, 7, 697.
[10]
(a) Lühning L. H.; Rosien M.; Doye S. Synlett 2017, 28, 2489.
[10]
(b) Kratz T.; Steinbach P.; Breitenlechner S.; Storch G.; Bann- warth C.; Bach T. J. Am. Chem. Soc. 2022, 144, 10133.
[11]
Morioka T.; Nishizawa A.; Furukawa T.; Tobisu M.; Chatani N. J. Am. Chem. Soc. 2017, 139, 1416.
[12]
Cao Z.-C.; Luo Q.-Y.; Shi Z.-J. Org. Lett. 2016, 18, 5978.
[13]
Guan B.-T.; Wang Y.; Li B.-J.; Yu D.-G.; Shi Z.-J. J. Am. Chem. Soc. 2008, 130, 14468.
[14]
Chen H.; Huang Z.; Hu X.; Tang G.; Xu P.; Zhao Y.; Cheng C.-H. J. Org. Chem. 2011, 76, 2338.
[15]
Hua X.; Masson-Makdissi J.; Sullivan R. J.; Newman S. G. Org. Lett. 2016, 18, 5312.
[16]
Qin C.; Lu W. J. Org. Chem. 2008, 73, 7424.
[17]
Zhao C.-W.; Ma J.-P.; Liu Q.-K.; Yu Y.; Wang P.; Li Y.-A.; Wang K.; Dong Y.-B. Green Chem. 2013, 15, 3150.
[18]
Vila C.; Cembellín S.; Hornillos V.; Giannerini M.; Fa?anás- Mastral M.; Feringa B. L. Eur. J. Org. Chem. 2015, 21, 15520.
[19]
Zhu S.; Xiao Y.; Guo Z.; Jiang H. Org. Lett. 2013, 15, 898.
[20]
Minami H.; Wang X.; Wang C.; Uchiyama M. Eur. J. Org. Chem. 2013, 2013, 7891.
[21]
Mohamed R. K.; Mondal S.; Gold B.; Evoniuk C. J.; Banerjee T.; Hanson K.; Alabugin I. V. J. Am. Chem. Soc. 2015, 137, 6335.
[22]
Baxendale I. R.; Griffiths-Jones C. M.; Ley S. V.; Tranmer G. K. Chem.-Eur. J. 2006, 12, 4407.
[23]
Liang Z.; Ju L.; Xie Y.; Huang L.; Zhang Y. Chem.-Eur. J. 2012, 18, 15816.
[24]
Reddy V. P.; Qiu R.; Iwasaki T.; Kambe N. Org. Lett. 2013, 15, 1290.
[25]
Ye M.; Gao G.-L.; Edmunds A. J. F.; Worthington P. A.; Morris J. A.; Yu J.-Q. J. Am. Chem. Soc. 2011, 133, 19090.
[26]
Kaur M.; U Din Reshi N.; Patra K.; Bhattacherya A.; Kunnikuruvan S.; Bera J. K. Chem.-Eur. J. 2021, 27, 10737.
[27]
Budén M. E.; Guastavino J. F.; Rossi R. A. Org. Lett. 2013, 15, 1174.
[28]
Pan C.; Zhu J.; Chen R.; Yu J.-T. Org. Biomol. Chem. 2017, 15, 6467.
[29]
Pavia C.; Ballerini E.; Bivona L. A.; Giacalone F.; Aprile C.; Vaccaro L.; Gruttadauria M. Adv. Synth. Catal. 2013, 355, 2007.
[30]
Gu P.; Xu Q.; Shi M. Synlett 2013, 24, 1255.
[31]
Mowery M. E.; DeShong P. J. Org. Chem. 1999, 64, 3266.
[32]
Salanouve E.; Bouzemame G.; Blanchard S.; Derat E.; Murr M. D.-E.; Fensterbank L. Chem.-Eur. J. 2014, 20, 4754.
[33]
Liang Q.; Xing P.; Huang Z.; Dong J.; Sharpless K. B.; Li X.; Jiang B. Org. Lett. 2015, 17, 1942.
[34]
Witzel S.; Xie J.; Rudolph M.; Hashmi A. S. K. Adv. Synth. Catal. 2017, 359, 1522.
[35]
Wang D.-Y.; Wang C.; Uchiyama M. J. Am. Chem. Soc. 2015, 137, 10488.
[36]
Shrestha B.; Thapa S.; Gurung S. K.; Pike R. A. S.; Giri R. J. Org. Chem. 2016, 81, 787.
文章导航

/