研究论文

铑(III)催化苯甲亚胺酸乙酯和CF3-亚胺氧锍叶立德C—H 活化/环化反应合成CF3-1H-苯并[de][1,8]萘吡啶

  • 文思 ,
  • 丁宇浩 ,
  • 田青于 ,
  • 葛进 ,
  • 程国林
展开
  • a 安康学院化学化工学院 陕西安康 725000
    b 华侨大学材料科学与工程学院 厦门市光电材料及其先进制造重点实验室 福建厦门 361021

收稿日期: 2023-06-01

  修回日期: 2023-07-26

  网络出版日期: 2023-08-22

基金资助

国家自然科学基金(22071068); 及华侨大学分析测试中心资助项目.

Rhodium(III)-Catalyzed Synthesis of CF3-1H-benzo[de][1,8]naph-thyridines via C—H Activation/Annulation of Benzimidates and CF3-Imidoyl Sulfoxonium Ylides

  • Si Wen ,
  • Yuhao Ding ,
  • Qingyu Tian ,
  • Jin Ge ,
  • Guolin Cheng
Expand
  • a College of Chemistry and Chemical Engineering, Ankang University, Ankang, Shaanxi 725000
    b Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021

Received date: 2023-06-01

  Revised date: 2023-07-26

  Online published: 2023-08-22

Supported by

National Natural Science Foundation of China(22071068); Instrumental Analysis Center of Huaqiao University.

摘要

在铑催化下, 实现了苯甲亚胺酸乙酯类化合物与CF3-亚胺叶立德的C—H活化/环化多米诺反应. 该合成策略具有良好的官能团耐受性和底物的普适性, 合成了一系列含三氟甲基的1H-苯并[de][1,8]萘吡啶, 产率为22%~86%.

本文引用格式

文思 , 丁宇浩 , 田青于 , 葛进 , 程国林 . 铑(III)催化苯甲亚胺酸乙酯和CF3-亚胺氧锍叶立德C—H 活化/环化反应合成CF3-1H-苯并[de][1,8]萘吡啶[J]. 有机化学, 2024 , 44(1) : 291 -300 . DOI: 10.6023/cjoc202306002

Abstract

A rhodium-catalyzed C—H activation/annulation domino reaction of benzimidates and CF3-imidoyl sulfoxonium ylides has been achieved. This synthetic strategy has good functional groups tolerance and universality of substrates, and a series of trifluoromethyl-containing 1H-benzo[de][1,8]naphthyridines were synthesized in 22%~86% yields.

参考文献

[1]
(a) Zhuang, L.; Wai, J. S.; Embrey, M. W.; Fisher, T. E.; Egbertson, M. S.; Payne, L. S.; Guare, J. P.; Vacca, J. P.; Hazuda, D. J.; Felock, P. J.; Wolfe, A. L.; Stillmock, K. A.; Witmer, M. V.; Moyer, G.; Schleif, W. A.; Gabryelski, L. J.; Leonard, Y. M.; Lynch, J. J.; Michelson, S. R.; Young, S. D. J. Med. Chem. 2003, 46, 453.
[1]
(b) Embrey, M. W.; Wai, J. S.; Funk, T. W.; Homnick, C. F.; Perlow, D. S.; Young, S. D.; Vacca, J. P.; Hazuda, D. J.; Felock, P. J.; Stillmock, K. A.; Witmer, M. V.; Moyer, G.; Schleif, W. A.; Gabryelski, L. J.; Jin, L.; Chen, I.-W.; Ellis, J. D.; Wong, B. K.; Lin, J. H.; Leonard, Y. M.; Tsou, N. N.; Zhuang, L. Bioorg. Med. Chem. Lett. 2005, 15, 4550.
[2]
(a) Calcul, L.; Longeon, A.; Mourabit, A. A.; Guyot, M.; Bourguet-Kondracki, M.-L. Tetrahedron 2003, 59, 6539.
[2]
(b) Aoki, S.; Kong, D.; Suna, H.; Sowa, Y.; Sakai, T.; Setiawan, A.; Kobayashi, M. Biochem. Biophys. Res. Commun. 2006, 342, 101.
[3]
(a) Stockner, F.; Beckert, R.; Gleich, D.; Birckner, E.; Gunther, W.; Gorls, H.; Vaughan, G. Eur. J. Org. Chem. 2007, 2007, 1237.
[3]
(b) Matschke, M.; Beckert, R.; Würthwein, E.-U.; Gorls, H. Synlett 2008, 2633.
[3]
(c) Bunz, U. H. F. Chem.-Eur. J. 2009, 15, 6780.
[3]
(d) Tang, Q.; Liu, J.; Chan, H. S.; Miao, Q. Chem.-Eur. J. 2009, 15, 3965.
[3]
(e) Behof, W. J.; Wang, D.; Niu, W.; Gorman, C. B. Org. Lett. 2010, 12, 2146.
[4]
(a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
[4]
(b) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
[4]
(c) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
[5]
(a) Mochida, S.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. Chem. Lett. 2010, 39, 744.
[5]
(b) Huang, J.-R.; Dong, L.; Han, B.; Peng, C.; Chen, Y.-C. Chem.-Eur. J. 2012, 18, 8896.
[5]
(c) Tan, X.; Liu, B.; Li, X.; Li, B.; Xu, S.; Song, H.; Wang, B. J. Am. Chem. Soc. 2012, 134, 16163.
[6]
Jayakumar, J.; Parthasarathy, K.; Chen, Y.-H.; Lee, T.-H.; Chuang, S.-C.; Cheng, C.-H. Angew. Chem., Int. Ed. 2014, 53, 9889.
[7]
Huang, T.; Wang, T.; Shi, Y.; Chen, J.; Guo, X.; Guo, X.; Guo, X.; Wu, Z.; Peng, D.; Wang, L.; Li, H.; Hai, L.; Wu, Y. Org. Lett. 2021, 23, 1548.
[8]
(a) Barday, M.; Janot, C.; Halcovitch, N. R.; Muir, J.; Aissa, C. Angew. Chem., Int. Ed. 2017, 56, 13117.
[8]
(b) Xu, Y.; Xu, Y.; Zheng, G.; Li, X. Org. Lett. 2017, 19, 5256.
[8]
(c) Shi, X.; Wang, R.; Zeng, X.; Zeng, X.; Hu, H.; Xie, C.; Wang, M. Adv. Synth. Catal. 2018, 360, 4049.
[8]
(d) Wu, X.; Xiong, H.; Sun, S.; Cheng, J. Org. Lett. 2018, 20, 1396.
[8]
(e) Zheng, G.; Tian, M.; Xu, Y.; Xu, Y.; Li, X. Org. Chem. Front. 2018, 5, 998.
[8]
(f) Cai, L.; Zhu, X.; Zhu, X.; Lin, A.; Yao, H. Org. Chem. Front. 2019, 6, 3688.
[8]
(g) Xie, W.; Chen, X.; Shi, J.; Li, J.; Liu, R. Org. Chem. Front. 2019, 6, 2662.
[8]
(h) Dong, Y.; Yu, J.-T.; Sun, S.; Cheng, J. Chem. Commun. 2020, 56, 6688.
[8]
(i) Hong, C.; Jiang, X.; Yu, S.; Lu, Z.; Zhang, Y. Chin. J. Org. Chem. 2021, 41, 888 (in Chinese).
[8]
(洪超, 蒋希程, 于书玲, 刘占祥, 张玉红, 有机化学, 2021, 41, 888.)
[8]
(j) Lee, S. C.; Son, J.-Y.; Kim, J. Y.; Eom, H.; Jang, S. B.; Lee, P. H. Adv. Synth. Catal. 2021, 363, 512.
[8]
(k) Aher, Y. N.; Pawar, A. B. J. Org. Chem. 2022, 87, 12608.
[8]
(l) Caiuby, C. A. D.; Furniel, L. G.; Burtoloso, A. C. B. Chem. Sci. 2022, 13, 1192.
[8]
(m) Kumar, S.; Nunewar, S.; Sabbi, T. K.; Kanchupalli, V. Org. Lett. 2022, 24, 3395.
[8]
(n) Ming, S.; Yang, J.; Wu, S.; Yao, G.; Xiong, H.; Du, Y.; Gong, J. Org. Chem. Front. 2022, 9, 5147.
[8]
(o) Zheng, Y.-C.; Shu, B.; Zeng, Y.-F.; Chen, S.-Y.; Song, J.-L.; Liu, Y.-Z.; Xiao, L.; Liu, X.-G.; Zhang, X.; Zhang, S.-S. Org. Chem. Front. 2022, 9, 5185.
[8]
(p) Phukon, J.; Bhorali, P.; Changmai, S.; Gogoi, S. Org. Lett. 2023, 25, 215.
[9]
(a) Johnson, B. M.; Shu, Y.-Z.; Zhuo, X.; Meanwell, N. A. J. Med. Chem. 2020, 63, 6315.
[9]
(b) Mandal, D.; Maji, S.; Pal, T.; Sinha, S. K.; Maiti, D. Chem. Commun. 2022, 58, 10442.
[9]
(c) Chen, D.; Jiang, J.; Wan, J.-P. Chin. J. Chem. 2022, 40, 2582.
[10]
Ma, R.; Deng, Z.; Wang, K.; Huang, D.; Hu, Y.; Lü, X. Chin. J. Org. Chem. 2022, 42, 353 (in Chinese).
[10]
(马然松, 邓周斌, 王克虎, 黄丹凤, 胡雨来, 闾肖波, 有机化学, 2022, 42, 353.)
[11]
(a) Wen, S.; Tian, Q.; Chen, Y.; Zhang, Y.; Cheng, G. Org. Lett. 2021, 23, 7407.
[11]
(b) Wen, S.; Chen, Y.; Tian, Q.; Zhang, Y.; Cheng, G. J. Org. Chem. 2022, 87, 1124.
[11]
(c) Wen, S.; Zhang, Y.; Tian, Q.; Chen, Y.; Cheng, G. Org. Chem. Front. 2022, 9, 4388.
[12]
(a) Pan, M.; Tong, Y.; Qiu, X.; Zeng, X.; Xiong, B. Chem. Commun. 2022, 58, 12443.
[12]
(b) Sun, Y.; Yang, Z.; Lu, S.-N.; Chen, Z.; Wu, X.-F. Org. Lett. 2022, 24, 6822.
[12]
(c) Yang, Z.; Tang, J.; Chen, Z.; Wu, X.-F. Org. Lett. 2022, 24, 7288.
[12]
(d) Yang, D.; Wang, Y.; Wang, T.; Dou, Q.; Zhou, K.; Zhai, H.; Cheng, B. Adv. Synth. Catal. 2023, 365, 88.
[12]
(e) Sun, Y.; Ling, S.; Duan, Y.; Li, J.; Zhengkai, C.; Wu, X.-F. Adv. Synth. Catal. 2023, 365, 1521.
[12]
(f) Wei, G.; Sun, Y.; Zheng, D.; Qiu, S.; Chen, Z.; Wu, X.-F. Eur. J. Org. Chem. 2023, 26, e202300090.
[13]
(a) Wen, S.; Lv, W.; Ba, D.; Liu, J.; Cheng, G. Chem. Sci. 2019, 10, 9104.
[13]
(b) Yu, J.; Wen, S.; Ba, D.; Lv, W.; Chen, Y.; Cheng, G. Org. Lett. 2019, 21, 6366.
[13]
(c) Wen, S.; Chen, Y.; Zhao, Z.; Ba, D.; Lv, W.; Cheng, G. J. Org. Chem. 2020, 85, 1216.
[14]
For the selected papers on Rh(III)-catalyzed C—H activations, see: (a) Fu, L.; Xu, W.; Pu, M.; Wu, Y.-D.; Liu, Y.; Wan, J.-P. Org. Lett. 2022, 24, 3003.
[14]
(b) Chen, D.; Zhou, L.; Liu, Y.; Wan, J.-P. Chem. Commun. 2023, 59, 4036.
[14]
(c) Chen, D.; Zhou, L.; Wen, C.; Wan, J.-P. J. Org. Chem. 2023, 88, 8619
[14]
(d) Cheng, G.-L.; Wen, S.; Zhang, S.-S. CN 202211461998, 2022.
[14]
(e) Zhang, Y.; Ling, S.; Li, P.; Chen, Z.; Wu, X.-F. Org. Lett. 2022, 24, 8864.
[15]
Wappes, E. A.; Nakafuku, K. M.; Nagib, D. A. J. Am. Chem. Soc. 2017, 139, 10204.
[16]
Lian, Y.; Coffey, S. B.; Li, Q.; Londregan, A. T. Org. Lett. 2016, 18, 1362.
文章导航

/