综述与进展

氮杂环丙烷与不饱和化合物发生[3+2]扩环反应的研究进展

  • 郝二军 ,
  • 丁笑波 ,
  • 王珂新 ,
  • 周红昊 ,
  • 杨启亮 ,
  • 石磊
展开
  • a 河南师范大学化学化工学院 抗病毒性传染病创新药物全国重点实验室 平原实验室 绿色化学介质与反应教育部重点实验室 精细化学品绿色制造河南省协同创新中心 河南新乡 453007
    b 大连理工大学化学学院 精细化工国家重点实验室 辽宁大连 116024

收稿日期: 2023-05-09

  修回日期: 2023-07-11

  网络出版日期: 2023-08-30

基金资助

国家自然科学基金(22171036); 国家自然科学基金(22007028); 河南省自然科学基金(232300421126); 河南师范大学化学化工学院开放研究基金(2020YB03)

Recent Progress on [3+2] Ring-Expansion Reaction of Aziridines with Unsaturated Compounds

  • Erjun Hao ,
  • Xiaobo Ding ,
  • Kexin Wang ,
  • Honghao Zhou ,
  • Qiliang Yang ,
  • Lei Shi
Expand
  • a State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007
    b State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024

Received date: 2023-05-09

  Revised date: 2023-07-11

  Online published: 2023-08-30

Supported by

National Natural Science Foundation of China(22171036); National Natural Science Foundation of China(22007028); Natural Science Foundation of Henan Province(232300421126); Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University(2020YB03)

摘要

由于具有较强的环张力, 氮杂环丙烷能够与多种不饱和化合物发生[3+2]扩环反应构建氮杂环骨架结构. 这些氮杂环化合物是许多药物、天然产物和生物活性分子的核心结构, 同时也是一类重要的有机反应中间体, 在医药、农业、化工、有机合成等领域具有十分广泛的用途. 近年来, 许多化学研究者以氮杂环丙烷作为合成子, 构建了结构复杂的杂环结构, 促进了氮杂环丙烷领域的快速发展. 对近十年来烯烃、炔烃、醛、酮、腈等含有不饱和键的化合物与氮杂环丙烷发生的[3+2]扩环反应进行了综述, 并对该领域的发展方向进行了展望.

本文引用格式

郝二军 , 丁笑波 , 王珂新 , 周红昊 , 杨启亮 , 石磊 . 氮杂环丙烷与不饱和化合物发生[3+2]扩环反应的研究进展[J]. 有机化学, 2023 , 43(12) : 4057 -4074 . DOI: 10.6023/cjoc202305008

Abstract

Due to their high ring strain, aziridines readily undergo ring-expansion reactions, reacting with various unsaturated compounds to form heterocyclic compounds. These heterocyclic compounds serve as important scaffolds for drugs, natural products, and bioactive molecules. Additionally, they are valuable organic intermediates with wide-ranging applications in medicine, agriculture, chemical engineering, organic synthesis, and related fields. In recent years, there has been a significant increase in the synthesis of heterocyclic compounds using aziridines as three-atom synthons, resulting in a rapid advancement of research in this area. This review aims to provide an overview of the most recent [3+2] ring-expansion reactions involving aziridines and unsaturated compounds, such as olefins, aldehydes, ketones, and nitriles, over the past decade. Furthermore, the prospect in this field is also discussed.

参考文献

[1]
Ohno H. Chem. Rev. 2014, 114, 7784
[2]
Ilardi E. A.; Njardarson J. T. J. Org. Chem. 2013, 78, 9533.
[3]
Wu Y.; Zhou X.; Xiao W.; Chen J. Chin. J. Org. Chem. 2020, 40, 3760. (in Chinese)
[3]
(吴雅莉, 周雪松, 肖文精, 陈加荣, 有机化学, 2020, 40, 3760.)
[4]
Du T.; Li S.; He Y.; Long H.; Liu X.; Li H. B.; Liu L. Chin. J. Chem. 2022, 40, 1681.
[5]
Xu B.; Zhang Z. M.; Han J.; Gu G.; Zhang J. Chin. J. Chem. 2022, 40, 1407.
[6]
Kini G. D.; Hennen W. J.; Robins R. K. J. Org. Chem. 1986, 51, 4436.
[7]
Arredondo V. M.; Tian S.; McDonald F. E.; Marks T. J. J. Am. Chem. Soc. 1999, 121, 3633.
[8]
Butler M. S. J. Nat. Prod. 2004, 67, 2141.
[9]
Magedov I. V.; Luchetti G.; Evdokimov N. M.; Manpadi M.; Steelant W. F. A.; Van slambrouck S.; Tongwa P.; Antipin M. Y.; Kornienko A. Bioorg. Med. Chem. Lett. 2008, 18, 1392.
[10]
More S. S.; Mohan T. K.; Kumar Y. S.; Kumar U. K.; Patel N. B. Beilstein J. Org. Chem. 2011, 7, 831.
[11]
Cai C.; Hu B.; Lü C. Chin. J. Org. Chem. 2005, 25, 1311. (in Chinese)
[11]
(蔡超君, 胡炳成, 吕春绪, 有机化学, 2005, 25, 1311.)
[12]
Wang Q.; Chang H.; Wei W.; Liu Q.; Gao W.; Li Y.; Li X. Chin. J. Org. Chem. 2016, 36, 939. (in Chinese)
[12]
(王清宇, 常宏宏, 魏文珑, 刘强, 高文超, 李彦威, 李兴, 有机化学, 2016, 36, 939.)
[13]
Gao Y.; Xiao Z.; Liu L.; Huang P. Chin. J. Org. Chem. 2017, 37, 1189. (in Chinese)
[13]
(高燕娇, 肖振华, 刘良先, 黄培强, 有机化学, 2017, 37, 1189.)
[14]
Feng J.-J.; Zhang J. ACS Catal. 2016, 6, 6651.
[15]
Lowe M. A.; Ostovar M.; Ferrini S.; Chen C. C.; Lawrence P. G.; Fontana F.; Calabrese A. A.; Aggarwal V. K. Angew. Chem., Int. Ed. 2011, 50, 6370.
[16]
Takahashi H.; Yasui S.; Tsunoi S.; Shibata I. Org. Lett. 2014, 16, 1192.
[17]
Xu C.-F.; Zheng B.-H.; Suo J.-J.; Ding C.-H.; Hou X.-L. Angew. Chem., Int. Ed. 2015, 54, 1604.
[18]
Huang Y.; Zheng C.; Pan L.; Jin Q.; Zhao G. J. Org. Chem. 2015, 80, 10710.
[19]
Lin T. Y.; Zhu C. Z.; Zhang P.; Wang Y.; Wu H. H.; Feng J. J.; Zhang J. Angew. Chem., Int. Ed. 2016, 55, 10844.
[20]
Feng J. J.; Lin T. Y.; Zhu C. Z.; Wang H.; Wu H. H.; Zhang J. J. Am. Chem. Soc. 2016, 138, 2178.
[21]
Wang B.; Liang M.; Tang J.; Deng Y.; Zhao J.; Sun H.; Tung C. H.; Jia J.; Xu Z. Org. Lett. 2016, 18, 4614.
[22]
Hao W.; Wu X.; Sun J. Z.; Siu J. C.; MacMillan S. N.; Lin S. J. Am. Chem. Soc. 2017, 139, 12141.
[23]
Rivinoja D. J.; Gee Y. S.; Gardiner M. G.; Ryan J. H.; Hyland C. J. T. ACS Catal. 2017, 7, 1053.
[24]
Zhu C.; Feng J.; Zhang J. Chin. J. Org. Chem. 2017, 37, 1165. (in Chinese)
[24]
(朱超泽, 冯见君, 张俊良, 有机化学, 2017, 37, 1165.)
[25]
Zhu C. Z.; Feng J. J.; Zhang J. Chem. Commun. 2018, 54, 2401.
[26]
Suo J. J.; Liu W.; Du J.; Ding C. H.; Hou X. L. Chem. Asian. J. 2018, 13, 959.
[27]
Zhang J. Q.; Tong F.; Sun B. B.; Fan W. T.; Chen J. B.; Hu D.; Wang X. W. J. Org. Chem. 2018, 83, 2882.
[28]
Wan S.-H.; Liu S.-T. Tetrahedron 2019, 75, 1166.
[29]
Xiao S.; Chen B.; Jiang Q.; He L.; Chu W.-D.; He C.-Y.; Liu Q.-Z. Org. Chem. Front. 2021, 8, 3729.
[30]
Zhu G. S.; Yang P. J.; Ma C. X.; Yang G.; Chai Z. Org. Lett. 2021, 23, 7933.
[31]
Dong P.; Chen L.; Yang Z.; Dong S.; Feng X. Org. Chem. Front. 2021, 8, 6874.
[32]
Shcherbakov N. V.; Titov G. D.; Chikunova E. I.; Filippov I. P.; Rostovskii N. V.; Kukushkin V. Y.; Dubovtsev A. Y. Org. Chem. Front. 2022, 9, 5133.
[33]
Griffin K.; Montagne C.; Hoang C. T.; Clarkson G. J.; Shipman M. Org. Biomol. Chem. 2012, 10, 1032.
[34]
Arena G.; Chen C. C.; Leonori D.; Aggarwal V. K. Org. Lett. 2013, 15, 4250.
[35]
Wang L.; Yang D.; Han F.; Li D.; Zhao D.; Wang R. Org. Lett. 2015, 17, 176.
[36]
Hashimoto T.; Takino K.; Hato K.; Maruoka K. Angew. Chem., Int. Ed. 2016, 55, 8081.
[37]
Cardoso A. L.; Henriques M. S.; Paixao J. A.; Pinho E. M. T. M. J. Org. Chem. 2016, 81, 9028.
[38]
Wang Y. N.; Li T. R.; Zhang M. M.; Cheng B. Y.; Lu L. Q.; Xiao W. J. J. Org. Chem. 2016, 81, 10491.
[39]
Liao Y.; Zhou B.; Xia Y.; Liu X.; Lin L.; Feng X. ACS Catal. 2017, 7, 3934.
[40]
Alajarin M.; Ba?on D.; Egea A.; Marín-Luna M.; Orenes R.-A.; Vidal A. Org. Chem. Front. 2018, 5, 2020.
[41]
Xing S.; Xia H.; Guo J.; Zou C.; Gao T.; Wang K.; Zhu B.; Pei M.; Bai M. J. Org. Chem. 2019, 84, 8984.
[42]
Rong J.; Jiang H.; Wang S.; Su Z.; Wang H.; Tao C. Org. Biomol. Chem. 2020, 18, 3149.
[43]
Zhao Q. Q.; Zhou X. S.; Xu S. H.; Wu Y. L.; Xiao W. J.; Chen J. R. Org. Lett. 2020, 22, 2470.
[44]
Li Y.; Chen F.; Zhu S.; Chu L. Org. Chem. Front. 2021, 8, 2196.
[45]
Viceriat A.; Marchand I.; Carret S.; Poisson J. F. Org. Lett. 2021, 23, 2449.
[46]
Wani I. A.; Sk S.; Mal A.; Sengupta A.; Ghorai M. K. Org. Lett. 2022, 24, 7867.
[47]
Xing S.; Wang Y.; Jin C.; Shi S.; Zhang Y.; Liao Z.; Wang K.; Zhu B. J. Org. Chem. 2022, 87, 6426.
[48]
Buchi G.; Rodriguez A. D.; Yakushijin K. J. Org. Chem. 1989, 54, 4494.
[49]
Wu X.; Zhang J. Synthesis 2012, 44, 2147.
[50]
Yoshiki M.; Ishibashi R.; Yamada Y.; Hanamoto T. Org. Lett. 2014, 16, 5509.
[51]
Spielmann K.; Lee A. V.; de Figueiredo R. M.; Campagne J. M. Org. Lett. 2018, 20, 1444.
[52]
Lin T. Y.; Wu H. H.; Feng J. J.; Zhang J. Org. Lett. 2018, 20, 3587.
[53]
Hajra S.; Abu Saleh S. K.; Hazra A.; Singh M. S. J. Org. Chem. 2019, 84, 8194.
[54]
Lemaire S.; Tulkens P. M.; Bambeke F. V. Antimicrob. Agents Chemother. 2010, 54, 2540.
[55]
Lin X.-Z.; Yang Z.-Z.; He L.-N.; Yuan Z.-Y. Green. Chem. 2015, 17, 795.
[56]
Adhikari D.; Miller A. W.; Baik M.-H.; Nguyen S. T. Chem. Sci. 2015, 6, 1293.
[57]
Punk M.; Merkley C.; Kennedy K.; Morgan J. B. ACS Catal. 2016, 6, 4694.
[58]
Zhou F.; Xie S.-L.; Gao X.-T.; Zhang R.; Wang C.-H.; Yin G.-Q.; Zhou J. Green Chem. 2017, 19, 3908.
[59]
Yang P. J.; Qi L.; Liu Z.; Yang G.; Chai Z. J. Am. Chem. Soc. 2018, 140, 17211.
[60]
Teranishi S.; Maeda K.; Kurahashi T.; Matsubara S. Org. Lett. 2019, 21, 2593.
[61]
Intrieri D.; Damiano C.; Sonzini P.; Gallo E. J. Porphyrins Phthalocyanines 2019, 23, 305.
[62]
Sonzini P.; Damiano C.; Intrieri D.; Manca G.; Gallo E. Adv. Synth. Catal. 2020, 362, 2961.
[63]
Seayad J.; Seayad A. M.; Ng J. K. P.; Chai C. L. L. ChemCatChem 2012, 4, 774.
[64]
Ueno A.; Kayaki Y.; Ikariya T. Green Chem. 2013, 15, 425.
[65]
Nale D. B.; Rana S.; Parida K.; Bhanage B. M. Appl. Catal., A 2014, 469, 340.
[66]
Chen W.; Zhong L.-X.; Peng X.-w.; Sun R.-C.; Lu F.-C. ACS Sustainable Chem. Eng. 2015, 3, 147.
[67]
Saptal V. B.; Bhanage B. M. ChemSusChem 2016, 9, 1980.
[68]
Liu A.-H.; Dang Y.-L.; Zhou H.; Zhang J.-J.; Lu X.-B. ChemCatChem 2018, 10, 2686.
[69]
Sengoden M.; North M.; Whitwood A. C. ChemSusChem 2019, 12, 3296.
[70]
Gerwick W. H.; Proteau P. J.; Nagle D. G.; Hamel E.; Blokhin A.; Slate D. L. J. Org. Chem. 1994, 59, 1243.
[71]
Boyce R. J.; Mulqueen G. C.; Pattenden G. Tetrahedron 1995, 51, 7321.
[72]
Hawkins C. J.; Lavin M. F.; Marshall K. A.; Van den Brenk A. L.; Watters D. J. J. Med. Chem. 1990, 33, 1634.
[73]
Zabriskie T. M.; Foster M. P.; Stout T. J.; Clardy J.; Ireland C. M. J. Am. Chem. Soc. 1990, 112, 8080.
[74]
Bhattacharyya A.; Kavitha C. V.; Ghorai M. K. J. Org. Chem. 2016, 81, 6433.
[75]
Sengoden M.; Irie R.; Punniyamurthy T. J. Org. Chem. 2016, 81, 11508.
[76]
Coin G.; Ferrier de Montal O.; Dubourdeaux P.; Latour J. M. Eur. J. Org. Chem. 2021, 2021, 443.
文章导航

/