综述与进展

过渡金属催化硅杂环丁烷的C—Si键断裂反应研究进展

  • 刘敏 ,
  • 亓丽萍 ,
  • 赵东兵
展开
  • 南开大学元素有机化学国家重点实验室 天津 300071

收稿日期: 2023-06-22

  修回日期: 2023-08-25

  网络出版日期: 2023-08-30

基金资助

国家自然科学基金(22022103); 国家自然科学基金(22071114)

Recent Advances in Transition Metal-Catalyzed C—Si Bond Cleavage of Silacyclobutanes

  • Min Liu ,
  • Liping Qi ,
  • Dongbing Zhao
Expand
  • State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071

Received date: 2023-06-22

  Revised date: 2023-08-25

  Online published: 2023-08-30

Supported by

National Natural Science Foundation of China(22022103); National Natural Science Foundation of China(22071114)

摘要

鉴于各类有机硅化合物在材料科学、电子器件及医药研究中的广泛应用, 发展绿色高效的方法合成结构复杂的有机硅化合物具有重要意义. 硅杂环丁烷作为小环化合物, 固有的环张力和路易斯酸性使其具有特殊的反应活性, 在过渡金属催化下可发生C—Si键断裂生成Si—M活性物种, 进而实现复杂有机硅化合物的高效构筑, 因此备受关注. 基于此, 总结了近年来Rh、Pd及Ni催化硅杂环丁烷的C—Si键断裂反应, 并对反应的机理及发展趋势进行了简单讨论.

本文引用格式

刘敏 , 亓丽萍 , 赵东兵 . 过渡金属催化硅杂环丁烷的C—Si键断裂反应研究进展[J]. 有机化学, 2023 , 43(10) : 3508 -3525 . DOI: 10.6023/cjoc202306019

Abstract

Due to the widespread application of various organosilicon compounds in material science, electronic devices and pharmaceutical research, it is of great significance to develop green and efficient synthetic methods for diverse silicon-con- taining molecules. Silacyclobutane is an important kind of small-membered rings, which exhibits unique reactivities under transition metal catalysis to cleave the C—Si bond driven by the inherent ring strain and Lewis acidity. The resulting Si—M species can then be transformed into various organosilicon compounds. Herein, the recent advances of Pd, Rh, and Ni-catalyzed C—Si bond cleavage reactions of silacyclobutanes are summarized in detail, and the mechanism and development tendency of such reactions are briefly discussed.

参考文献

[1]
(a) Ramesh R.; Reddy D. S. J. Med. Chem. 2018, 61, 3779.
[1]
(b) Franz A. K.; Wilson S.O. J. Med. Chem. 2013, 56, 388.
[1]
(c) Su T. A.; Li H.; Klausen R. S.; Kim N. T.; Neupane M.; Leighton J. L.; Steigerwald M. L. Venkataraman L.; Nuckolls C. Acc. Chem. Res. 2017, 50, 1088.
[1]
(d) Gai L. Z.; Mackc J.; Lua H.; Nyokongc T.; Li Z. F.; Kobayashi N.; Shen Z. Coord. Chem. Rev. 2015, 285, 24.
[2]
Sommer L. H.; Baum G. A. J. Am. Chem. Soc. 1954, 76, 5002.
[3]
Mu Q. C.; Chen J.; Xia C. G.; Xu L.W. Coord. Chem. Rev. 2018, 374, 93.
[4]
Huang W. S.; Wang Q.; Yang H.; Xu L. W. Synthesis 2022, 54, 5400.
[5]
Huang J.; Liu F.; Wu X.; Chen J. Q.; Wu J. Org. Chem. Front. 2022, 9, 2840.
[6]
Sakurai H.; Imai T. Chem. Lett. 1975, 891.
[7]
(a) Takeyama Y.; Nozaki K.; Matsumoto K.; Oshima K.; Utimoto K. Bull. Chem. Soc. Jpn. 1991, 64, 1461.
[7]
(b) Liu J. H.; Zhang Q. D.; Li P.; Qu Z.; Sun S. H.; Ma Y. P.; Su D. Y.; Zong Y. L.; Zhang J. X. Eur. J. Inorg. Chem. 2014, 2014, 3435.
[8]
Shintani R.; Moriya K.; Hayashi T. J. Am. Chem. Soc. 2011, 133, 16440.
[9]
Shintani R.; Moriya K.; Hayashi T. Org. Lett. 2012, 14, 2902.
[10]
Hamada N.; Hayashia D.; Shintani R. Chem. Commun. 2023, 59, 9122.
[11]
Chen H.; Chen Y.; Tang X. X.; Liu S. F.; Wang R. P.; Hu T. B.; Gao L.; Song Z. L. Angew. Chem., Int. Ed. 2019, 58, 4695.
[12]
Luo G.; Chen L.; Li Y.; Fan Y.; Wang D.; Yang Y.; Gao L.; Jiang R.; Song Z. Org. Chem. Front. 2021, 8, 5941.
[13]
Chen H.; Peng J.; Pang Q. J.; Du H. M.; Huang L.Y.; Gao L.; Lan Y.; Yang C.; Song Z. L. Angew. Chem., Int. Ed. 2022, 61, e202212889.
[14]
Zhu W. K.; Xu L. W. J. Chin. J. Org. Chem. 2023, 43, 362 (in Chinese).
[14]
(祝炜轲, 徐利文, 有机化学, 2023, 43, 362.)
[15]
Chen H.; Zhang H. X.; Du H. M.; Kuang Y. Z.; Pang Q. J. Gao L.; Wang W. S.; Yang C.; Song Z. L. Org. Lett. 2023, 25, 1558.
[16]
Wang X.; Huang S. S.; Zhang F. J.; Xie J. L.; Li Z.; Xu Z.; Ye F.; Xu L. W. Org. Chem. Front. 2021, 8, 6577.
[17]
Wang X. C.; Li B.; Ju C. W.; Zhao D. Nat. Commun. 2022, 13, 3392.
[18]
Wang X. B.; Zheng Z. J.; Xie J. L.; Gu X. W.; Mu Q. C.; Yin G. W.; Ye F.; Xu Z.; Xu L. W. Angew. Chem., Int. Ed. 2020, 59, 790.
[19]
Wang X. C.; Zhao D. B. J. Chin. J. Org. Chem. 2020, 40, 1080 (in Chinese).
[19]
(王希超, 赵东兵, 有机化学, 2020, 40, 1080.)
[20]
Xu H.; Fang X. J.; Huang W. S.; Xu Z.; Li L.; Ye F.; Cao J.; Xu L. W. Org. Chem. Front. 2022, 9, 5272.
[21]
Tang X. X.; Zhang Y.; Tang Y. L.; Li Y.; Zhou J. J.; Wang D. Y.; Gao L.; Su Z. H.; Song Z. L. ACS Catal. 2022, 12, 5185.
[22]
Saito S.; Yoshizawa T.; Ishigami S.; Yamasaki R. Tetrahedron Lett. 2010, 51, 6028.
[23]
Hirano K.; Yorimitsu H.; Oshima K. Org. Lett. 2008, 10, 2199.
[24]
Hirano K.; Yorimitsu H.; Oshima K. Org. Lett. 2006, 8, 483.
[25]
Wang Q.; Zhong K. B.; Xu H.; Li S. N.; Zhu W. K.; Ye F.; Xu Z.; Lan Y.; Xu L. W. ACS Catal. 2022, 12, 4571.
[26]
Zhang W. L.; Chen S. W.; Shen X. Chin. J. Org. Chem. 2023, 43, 3636 (in Chinese).
[26]
(张维露, 陈绍维, 沈晓, 有机化学, 2023, 43, 3636.)
[27]
Ishida N.; Okumura S.; Murakami M. Chem. Lett. 2018, 47, 570.
[28]
Lv X.; Zhang X.; Sa R.; Huang F.; Lu G. Org. Chem. Front. 2019, 6, 3629
[29]
Huo J. F.; Zhong K. B.; Xue Y. Z.; Lyu M. M.; Ping Y. F.; Liu Z. X.; Lan Y.; Wang J. B. J. Am. Chem. Soc. 2021, 143, 12968.
[30]
Huo J.; Zhong K.; Xue Y.; Lyu M.; Ping Y.; Ouyang W.; Liu Z.; Lan Y.; Wang J. B. Chem.-Eur. J. 2022, 28, e202200191.
[31]
Tanaka Y.; Yamashita H.; Tanaka M. Organometallics 1996, 15, 1524.
[32]
Chauhan B. P. S.; Tanaka Y.; Yamashita H.; Tanaka M. Chem. Commun. 1996, 1207.
[33]
Tanaka Y.; Yamashita M. Appl. Organomet. Chem. 2002, 16, 51.
[34]
(a) Qin Y.; Han J. L.; Ju C. W.; Zhao D. Angew. Chem., Int. Ed. 2020, 59, 8481.
[34]
(b) Qin Y.; Li L. H.; Liang J. Y.; Li K. L.; Zhao D. Chem. Sci. 2021, 12, 14224.
[35]
(a) Ishida N.; Ikemoto W.; Murakami M. J. Am. Chem. Soc. 2014, 136, 5912.
[35]
(b) Okumura S.; Sun F.; Ishida N.; Murakami M. J. Am. Chem. Soc. 2017, 139, 12414.
[35]
(c) Zhang J.; Pan D.; Zhang H.-X.; Yan N.; Xue X.-S.; Zhao D. CCS Chem. 2023, 5, 1753.
[36]
Xu Z. Y.; Zhang S. Q.; Liu J. R.; Chen P. P.; Li X.; Yu H. Z.; Hong X.; Fu Y. Organometallics 2018, 37, 592.
[37]
Zhao W. T.; Gao F.; Zhao D. Angew. Chem., Int. Ed. 2018, 57, 6329.
[38]
Wang X. C.; Wang H. R.; Xu X.; Zhao D. Eur. J. Org. Chem. 2021, 2021, 3039.
[39]
Zhu M. H.; Zhang X. W.; Usman M.; Cong H.; Liu W. B. ACS Catal. 2021, 11, 5703.
[40]
Oshima K.; Yorimitsu H.; Hirano K. J. Am. Chem. Soc. 2007, 129, 6094.
[41]
Zhang J. Y.; Yan N.; Ju C. W.; Zhao D. Angew. Chem., Int. Ed. 2021, 60, 25723.
[42]
Yin G. W.; Xu L. W. Chin. J. Org. Chem. 2021, 41, 4839 (in Chinese).
[42]
(尹官武, 徐利文, 有机化学, 2021, 41, 4839.)
[43]
Zhang Q. W.; An K.; Liu L. C.; Guo S. X.; Jiang C. R.; Guo H. F.; He W. Angew. Chem., Int. Ed. 2016, 55, 6319.
[44]
Zhang L. X.; An K.; Wang Y.; Wu Y. D.; Zhang X. H.; Yu Z. X.; He W. J. Am. Chem. Soc. 2021, 143, 3571.
[45]
Zhang Q. W.; An K.; Liu C.; Zhang Q.; Guo H. F.; He W. Angew. Chem., Int. Ed. 2017, 56, 1125.
[46]
An K.; Ma W.; Liu L. C.; He T.; Guan G.; Zhang Q. W.; He W. Nat. Commun. 2022, 13, 847.
[47]
He T.; Li B.; Liu L. C.; Ma W. P.; He W. Chem.-Eur. J. 2021, 27, 5648.
[48]
Weyenberg D. R.; Nelson L. E. J. Org. Chem. 1965, 30, 2618.
[49]
Chen S.; He X.; Jin C.; Zhang W.; Yang Y.; Liu S.; Lan Y.; Houk K. N.; Shen X. Angew. Chem., Int. Ed. 2022, 61, e202213431.
[50]
Tanaka Y.; Nishigaki A.; Kimura Y.; Yamashita M. Appl. Organomet. Chem. 2001, 15, 667.
文章导航

/