过渡金属催化硅杂环丁烷的C—Si键断裂反应研究进展
收稿日期: 2023-06-22
修回日期: 2023-08-25
网络出版日期: 2023-08-30
基金资助
国家自然科学基金(22022103); 国家自然科学基金(22071114)
Recent Advances in Transition Metal-Catalyzed C—Si Bond Cleavage of Silacyclobutanes
Received date: 2023-06-22
Revised date: 2023-08-25
Online published: 2023-08-30
Supported by
National Natural Science Foundation of China(22022103); National Natural Science Foundation of China(22071114)
刘敏 , 亓丽萍 , 赵东兵 . 过渡金属催化硅杂环丁烷的C—Si键断裂反应研究进展[J]. 有机化学, 2023 , 43(10) : 3508 -3525 . DOI: 10.6023/cjoc202306019
Due to the widespread application of various organosilicon compounds in material science, electronic devices and pharmaceutical research, it is of great significance to develop green and efficient synthetic methods for diverse silicon-con- taining molecules. Silacyclobutane is an important kind of small-membered rings, which exhibits unique reactivities under transition metal catalysis to cleave the C—Si bond driven by the inherent ring strain and Lewis acidity. The resulting Si—M species can then be transformed into various organosilicon compounds. Herein, the recent advances of Pd, Rh, and Ni-catalyzed C—Si bond cleavage reactions of silacyclobutanes are summarized in detail, and the mechanism and development tendency of such reactions are briefly discussed.
Key words: transition metal catalysis; silacyclobutane; C—Si bond cleavage
| [1] | (a) Ramesh R.; Reddy D. S. J. Med. Chem. 2018, 61, 3779. |
| [1] | (b) Franz A. K.; Wilson S.O. J. Med. Chem. 2013, 56, 388. |
| [1] | (c) Su T. A.; Li H.; Klausen R. S.; Kim N. T.; Neupane M.; Leighton J. L.; Steigerwald M. L. Venkataraman L.; Nuckolls C. Acc. Chem. Res. 2017, 50, 1088. |
| [1] | (d) Gai L. Z.; Mackc J.; Lua H.; Nyokongc T.; Li Z. F.; Kobayashi N.; Shen Z. Coord. Chem. Rev. 2015, 285, 24. |
| [2] | Sommer L. H.; Baum G. A. J. Am. Chem. Soc. 1954, 76, 5002. |
| [3] | Mu Q. C.; Chen J.; Xia C. G.; Xu L.W. Coord. Chem. Rev. 2018, 374, 93. |
| [4] | Huang W. S.; Wang Q.; Yang H.; Xu L. W. Synthesis 2022, 54, 5400. |
| [5] | Huang J.; Liu F.; Wu X.; Chen J. Q.; Wu J. Org. Chem. Front. 2022, 9, 2840. |
| [6] | Sakurai H.; Imai T. Chem. Lett. 1975, 891. |
| [7] | (a) Takeyama Y.; Nozaki K.; Matsumoto K.; Oshima K.; Utimoto K. Bull. Chem. Soc. Jpn. 1991, 64, 1461. |
| [7] | (b) Liu J. H.; Zhang Q. D.; Li P.; Qu Z.; Sun S. H.; Ma Y. P.; Su D. Y.; Zong Y. L.; Zhang J. X. Eur. J. Inorg. Chem. 2014, 2014, 3435. |
| [8] | Shintani R.; Moriya K.; Hayashi T. J. Am. Chem. Soc. 2011, 133, 16440. |
| [9] | Shintani R.; Moriya K.; Hayashi T. Org. Lett. 2012, 14, 2902. |
| [10] | Hamada N.; Hayashia D.; Shintani R. Chem. Commun. 2023, 59, 9122. |
| [11] | Chen H.; Chen Y.; Tang X. X.; Liu S. F.; Wang R. P.; Hu T. B.; Gao L.; Song Z. L. Angew. Chem., Int. Ed. 2019, 58, 4695. |
| [12] | Luo G.; Chen L.; Li Y.; Fan Y.; Wang D.; Yang Y.; Gao L.; Jiang R.; Song Z. Org. Chem. Front. 2021, 8, 5941. |
| [13] | Chen H.; Peng J.; Pang Q. J.; Du H. M.; Huang L.Y.; Gao L.; Lan Y.; Yang C.; Song Z. L. Angew. Chem., Int. Ed. 2022, 61, e202212889. |
| [14] | Zhu W. K.; Xu L. W. J. Chin. J. Org. Chem. 2023, 43, 362 (in Chinese). |
| [14] | (祝炜轲, 徐利文, 有机化学, 2023, 43, 362.) |
| [15] | Chen H.; Zhang H. X.; Du H. M.; Kuang Y. Z.; Pang Q. J. Gao L.; Wang W. S.; Yang C.; Song Z. L. Org. Lett. 2023, 25, 1558. |
| [16] | Wang X.; Huang S. S.; Zhang F. J.; Xie J. L.; Li Z.; Xu Z.; Ye F.; Xu L. W. Org. Chem. Front. 2021, 8, 6577. |
| [17] | Wang X. C.; Li B.; Ju C. W.; Zhao D. Nat. Commun. 2022, 13, 3392. |
| [18] | Wang X. B.; Zheng Z. J.; Xie J. L.; Gu X. W.; Mu Q. C.; Yin G. W.; Ye F.; Xu Z.; Xu L. W. Angew. Chem., Int. Ed. 2020, 59, 790. |
| [19] | Wang X. C.; Zhao D. B. J. Chin. J. Org. Chem. 2020, 40, 1080 (in Chinese). |
| [19] | (王希超, 赵东兵, 有机化学, 2020, 40, 1080.) |
| [20] | Xu H.; Fang X. J.; Huang W. S.; Xu Z.; Li L.; Ye F.; Cao J.; Xu L. W. Org. Chem. Front. 2022, 9, 5272. |
| [21] | Tang X. X.; Zhang Y.; Tang Y. L.; Li Y.; Zhou J. J.; Wang D. Y.; Gao L.; Su Z. H.; Song Z. L. ACS Catal. 2022, 12, 5185. |
| [22] | Saito S.; Yoshizawa T.; Ishigami S.; Yamasaki R. Tetrahedron Lett. 2010, 51, 6028. |
| [23] | Hirano K.; Yorimitsu H.; Oshima K. Org. Lett. 2008, 10, 2199. |
| [24] | Hirano K.; Yorimitsu H.; Oshima K. Org. Lett. 2006, 8, 483. |
| [25] | Wang Q.; Zhong K. B.; Xu H.; Li S. N.; Zhu W. K.; Ye F.; Xu Z.; Lan Y.; Xu L. W. ACS Catal. 2022, 12, 4571. |
| [26] | Zhang W. L.; Chen S. W.; Shen X. Chin. J. Org. Chem. 2023, 43, 3636 (in Chinese). |
| [26] | (张维露, 陈绍维, 沈晓, 有机化学, 2023, 43, 3636.) |
| [27] | Ishida N.; Okumura S.; Murakami M. Chem. Lett. 2018, 47, 570. |
| [28] | Lv X.; Zhang X.; Sa R.; Huang F.; Lu G. Org. Chem. Front. 2019, 6, 3629 |
| [29] | Huo J. F.; Zhong K. B.; Xue Y. Z.; Lyu M. M.; Ping Y. F.; Liu Z. X.; Lan Y.; Wang J. B. J. Am. Chem. Soc. 2021, 143, 12968. |
| [30] | Huo J.; Zhong K.; Xue Y.; Lyu M.; Ping Y.; Ouyang W.; Liu Z.; Lan Y.; Wang J. B. Chem.-Eur. J. 2022, 28, e202200191. |
| [31] | Tanaka Y.; Yamashita H.; Tanaka M. Organometallics 1996, 15, 1524. |
| [32] | Chauhan B. P. S.; Tanaka Y.; Yamashita H.; Tanaka M. Chem. Commun. 1996, 1207. |
| [33] | Tanaka Y.; Yamashita M. Appl. Organomet. Chem. 2002, 16, 51. |
| [34] | (a) Qin Y.; Han J. L.; Ju C. W.; Zhao D. Angew. Chem., Int. Ed. 2020, 59, 8481. |
| [34] | (b) Qin Y.; Li L. H.; Liang J. Y.; Li K. L.; Zhao D. Chem. Sci. 2021, 12, 14224. |
| [35] | (a) Ishida N.; Ikemoto W.; Murakami M. J. Am. Chem. Soc. 2014, 136, 5912. |
| [35] | (b) Okumura S.; Sun F.; Ishida N.; Murakami M. J. Am. Chem. Soc. 2017, 139, 12414. |
| [35] | (c) Zhang J.; Pan D.; Zhang H.-X.; Yan N.; Xue X.-S.; Zhao D. CCS Chem. 2023, 5, 1753. |
| [36] | Xu Z. Y.; Zhang S. Q.; Liu J. R.; Chen P. P.; Li X.; Yu H. Z.; Hong X.; Fu Y. Organometallics 2018, 37, 592. |
| [37] | Zhao W. T.; Gao F.; Zhao D. Angew. Chem., Int. Ed. 2018, 57, 6329. |
| [38] | Wang X. C.; Wang H. R.; Xu X.; Zhao D. Eur. J. Org. Chem. 2021, 2021, 3039. |
| [39] | Zhu M. H.; Zhang X. W.; Usman M.; Cong H.; Liu W. B. ACS Catal. 2021, 11, 5703. |
| [40] | Oshima K.; Yorimitsu H.; Hirano K. J. Am. Chem. Soc. 2007, 129, 6094. |
| [41] | Zhang J. Y.; Yan N.; Ju C. W.; Zhao D. Angew. Chem., Int. Ed. 2021, 60, 25723. |
| [42] | Yin G. W.; Xu L. W. Chin. J. Org. Chem. 2021, 41, 4839 (in Chinese). |
| [42] | (尹官武, 徐利文, 有机化学, 2021, 41, 4839.) |
| [43] | Zhang Q. W.; An K.; Liu L. C.; Guo S. X.; Jiang C. R.; Guo H. F.; He W. Angew. Chem., Int. Ed. 2016, 55, 6319. |
| [44] | Zhang L. X.; An K.; Wang Y.; Wu Y. D.; Zhang X. H.; Yu Z. X.; He W. J. Am. Chem. Soc. 2021, 143, 3571. |
| [45] | Zhang Q. W.; An K.; Liu C.; Zhang Q.; Guo H. F.; He W. Angew. Chem., Int. Ed. 2017, 56, 1125. |
| [46] | An K.; Ma W.; Liu L. C.; He T.; Guan G.; Zhang Q. W.; He W. Nat. Commun. 2022, 13, 847. |
| [47] | He T.; Li B.; Liu L. C.; Ma W. P.; He W. Chem.-Eur. J. 2021, 27, 5648. |
| [48] | Weyenberg D. R.; Nelson L. E. J. Org. Chem. 1965, 30, 2618. |
| [49] | Chen S.; He X.; Jin C.; Zhang W.; Yang Y.; Liu S.; Lan Y.; Houk K. N.; Shen X. Angew. Chem., Int. Ed. 2022, 61, e202213431. |
| [50] | Tanaka Y.; Nishigaki A.; Kimura Y.; Yamashita M. Appl. Organomet. Chem. 2001, 15, 667. |
/
| 〈 |
|
〉 |