有机化学 ›› 2023, Vol. 43 ›› Issue (10): 3508-3525.DOI: 10.6023/cjoc202306019 上一篇 下一篇
所属专题: 有机硅化学专辑-2023
综述与进展
收稿日期:
2023-06-22
修回日期:
2023-08-25
发布日期:
2023-08-30
基金资助:
Min Liu, Liping Qi(), Dongbing Zhao()
Received:
2023-06-22
Revised:
2023-08-25
Published:
2023-08-30
Contact:
*E-mail: Supported by:
文章分享
鉴于各类有机硅化合物在材料科学、电子器件及医药研究中的广泛应用, 发展绿色高效的方法合成结构复杂的有机硅化合物具有重要意义. 硅杂环丁烷作为小环化合物, 固有的环张力和路易斯酸性使其具有特殊的反应活性, 在过渡金属催化下可发生C—Si键断裂生成Si—M活性物种, 进而实现复杂有机硅化合物的高效构筑, 因此备受关注. 基于此, 总结了近年来Rh、Pd及Ni催化硅杂环丁烷的C—Si键断裂反应, 并对反应的机理及发展趋势进行了简单讨论.
刘敏, 亓丽萍, 赵东兵. 过渡金属催化硅杂环丁烷的C—Si键断裂反应研究进展[J]. 有机化学, 2023, 43(10): 3508-3525.
Min Liu, Liping Qi, Dongbing Zhao. Recent Advances in Transition Metal-Catalyzed C—Si Bond Cleavage of Silacyclobutanes[J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3508-3525.
[1] |
(d) Gai L. Z.; Mackc J.; Lua H.; Nyokongc T.; Li Z. F.; Kobayashi N.; Shen Z. Coord. Chem. Rev. 2015, 285, 24.
doi: 10.1016/j.ccr.2014.10.009 pmid: 29039662 |
[2] |
Sommer L. H.; Baum G. A. J. Am. Chem. Soc. 1954, 76, 5002.
|
[3] |
Mu Q. C.; Chen J.; Xia C. G.; Xu L.W. Coord. Chem. Rev. 2018, 374, 93.
doi: 10.1016/j.ccr.2018.06.015 |
[4] |
Huang W. S.; Wang Q.; Yang H.; Xu L. W. Synthesis 2022, 54, 5400.
doi: 10.1055/a-1929-4890 |
[5] |
Huang J.; Liu F.; Wu X.; Chen J. Q.; Wu J. Org. Chem. Front. 2022, 9, 2840.
doi: 10.1039/D2QO00410K |
[6] |
Sakurai H.; Imai T. Chem. Lett. 1975, 891.
|
[7] |
(a) Takeyama Y.; Nozaki K.; Matsumoto K.; Oshima K.; Utimoto K. Bull. Chem. Soc. Jpn. 1991, 64, 1461.
doi: 10.1246/bcsj.64.1461 |
(b) Liu J. H.; Zhang Q. D.; Li P.; Qu Z.; Sun S. H.; Ma Y. P.; Su D. Y.; Zong Y. L.; Zhang J. X. Eur. J. Inorg. Chem. 2014, 2014, 3435.
doi: 10.1002/ejic.v2014.21 |
|
[8] |
Shintani R.; Moriya K.; Hayashi T. J. Am. Chem. Soc. 2011, 133, 16440.
doi: 10.1021/ja208621x pmid: 21936508 |
[9] |
Shintani R.; Moriya K.; Hayashi T. Org. Lett. 2012, 14, 2902.
doi: 10.1021/ol301191u pmid: 22612531 |
[10] |
Hamada N.; Hayashia D.; Shintani R. Chem. Commun. 2023, 59, 9122.
doi: 10.1039/D3CC00442B |
[11] |
Chen H.; Chen Y.; Tang X. X.; Liu S. F.; Wang R. P.; Hu T. B.; Gao L.; Song Z. L. Angew. Chem., Int. Ed. 2019, 58, 4695.
doi: 10.1002/anie.v58.14 |
[12] |
Luo G.; Chen L.; Li Y.; Fan Y.; Wang D.; Yang Y.; Gao L.; Jiang R.; Song Z. Org. Chem. Front. 2021, 8, 5941.
doi: 10.1039/D1QO00682G |
[13] |
Chen H.; Peng J.; Pang Q. J.; Du H. M.; Huang L.Y.; Gao L.; Lan Y.; Yang C.; Song Z. L. Angew. Chem., Int. Ed. 2022, 61, e202212889.
|
[14] |
Zhu W. K.; Xu L. W. J. Chin. J. Org. Chem. 2023, 43, 362 (in Chinese).
|
(祝炜轲, 徐利文, 有机化学, 2023, 43, 362.)
doi: 10.6023/cjoc202300003 |
|
[15] |
Chen H.; Zhang H. X.; Du H. M.; Kuang Y. Z.; Pang Q. J. Gao L.; Wang W. S.; Yang C.; Song Z. L. Org. Lett. 2023, 25, 1558.
doi: 10.1021/acs.orglett.3c00346 |
[1] |
(a) Ramesh R.; Reddy D. S. J. Med. Chem. 2018, 61, 3779.
doi: 10.1021/acs.jmedchem.7b00718 pmid: 29039662 |
(b) Franz A. K.; Wilson S.O. J. Med. Chem. 2013, 56, 388.
doi: 10.1021/jm3010114 pmid: 29039662 |
|
(c) Su T. A.; Li H.; Klausen R. S.; Kim N. T.; Neupane M.; Leighton J. L.; Steigerwald M. L. Venkataraman L.; Nuckolls C. Acc. Chem. Res. 2017, 50, 1088.
doi: 10.1021/acs.accounts.7b00059 pmid: 29039662 |
|
[16] |
Wang X.; Huang S. S.; Zhang F. J.; Xie J. L.; Li Z.; Xu Z.; Ye F.; Xu L. W. Org. Chem. Front. 2021, 8, 6577.
doi: 10.1039/D1QO01386F |
[17] |
Wang X. C.; Li B.; Ju C. W.; Zhao D. Nat. Commun. 2022, 13, 3392.
doi: 10.1038/s41467-022-31006-y |
[18] |
Wang X. B.; Zheng Z. J.; Xie J. L.; Gu X. W.; Mu Q. C.; Yin G. W.; Ye F.; Xu Z.; Xu L. W. Angew. Chem., Int. Ed. 2020, 59, 790.
doi: 10.1002/anie.v59.2 |
[19] |
Wang X. C.; Zhao D. B. J. Chin. J. Org. Chem. 2020, 40, 1080 (in Chinese).
|
(王希超, 赵东兵, 有机化学, 2020, 40, 1080.)
doi: 10.6023/cjoc202000019 |
|
[20] |
Xu H.; Fang X. J.; Huang W. S.; Xu Z.; Li L.; Ye F.; Cao J.; Xu L. W. Org. Chem. Front. 2022, 9, 5272.
doi: 10.1039/D2QO00943A |
[21] |
Tang X. X.; Zhang Y.; Tang Y. L.; Li Y.; Zhou J. J.; Wang D. Y.; Gao L.; Su Z. H.; Song Z. L. ACS Catal. 2022, 12, 5185.
doi: 10.1021/acscatal.1c05831 |
[22] |
Saito S.; Yoshizawa T.; Ishigami S.; Yamasaki R. Tetrahedron Lett. 2010, 51, 6028.
doi: 10.1016/j.tetlet.2010.09.031 |
[23] |
Hirano K.; Yorimitsu H.; Oshima K. Org. Lett. 2008, 10, 2199.
doi: 10.1021/ol800603z pmid: 18457406 |
[24] |
Hirano K.; Yorimitsu H.; Oshima K. Org. Lett. 2006, 8, 483.
pmid: 16435865 |
[25] |
Wang Q.; Zhong K. B.; Xu H.; Li S. N.; Zhu W. K.; Ye F.; Xu Z.; Lan Y.; Xu L. W. ACS Catal. 2022, 12, 4571.
doi: 10.1021/acscatal.2c00533 |
[26] |
Zhang W. L.; Chen S. W.; Shen X. Chin. J. Org. Chem. 2023, 43, 3636 (in Chinese).
|
(张维露, 陈绍维, 沈晓, 有机化学, 2023, 43, 3636.)
|
|
[27] |
Ishida N.; Okumura S.; Murakami M. Chem. Lett. 2018, 47, 570.
doi: 10.1246/cl.171211 |
[28] |
Lv X.; Zhang X.; Sa R.; Huang F.; Lu G. Org. Chem. Front. 2019, 6, 3629
doi: 10.1039/C9QO00854C |
[29] |
Huo J. F.; Zhong K. B.; Xue Y. Z.; Lyu M. M.; Ping Y. F.; Liu Z. X.; Lan Y.; Wang J. B. J. Am. Chem. Soc. 2021, 143, 12968.
doi: 10.1021/jacs.1c05879 |
[30] |
Huo J.; Zhong K.; Xue Y.; Lyu M.; Ping Y.; Ouyang W.; Liu Z.; Lan Y.; Wang J. B. Chem.-Eur. J. 2022, 28, e202200191.
|
[31] |
Tanaka Y.; Yamashita H.; Tanaka M. Organometallics 1996, 15, 1524.
doi: 10.1021/om950786n |
[32] |
Chauhan B. P. S.; Tanaka Y.; Yamashita H.; Tanaka M. Chem. Commun. 1996, 1207.
|
[33] |
Tanaka Y.; Yamashita M. Appl. Organomet. Chem. 2002, 16, 51.
doi: 10.1002/(ISSN)1099-0739 |
[34] |
(a) Qin Y.; Han J. L.; Ju C. W.; Zhao D. Angew. Chem., Int. Ed. 2020, 59, 8481.
doi: 10.1002/anie.v59.22 |
(b) Qin Y.; Li L. H.; Liang J. Y.; Li K. L.; Zhao D. Chem. Sci. 2021, 12, 14224.
doi: 10.1039/D1SC04180K |
|
[35] |
(a) Ishida N.; Ikemoto W.; Murakami M. J. Am. Chem. Soc. 2014, 136, 5912.
doi: 10.1021/ja502601g pmid: 24720573 |
(b) Okumura S.; Sun F.; Ishida N.; Murakami M. J. Am. Chem. Soc. 2017, 139, 12414.
doi: 10.1021/jacs.7b07667 pmid: 24720573 |
|
(c) Zhang J.; Pan D.; Zhang H.-X.; Yan N.; Xue X.-S.; Zhao D. CCS Chem. 2023, 5, 1753.
doi: 10.31635/ccschem.023.202302938 pmid: 24720573 |
|
[36] |
Xu Z. Y.; Zhang S. Q.; Liu J. R.; Chen P. P.; Li X.; Yu H. Z.; Hong X.; Fu Y. Organometallics 2018, 37, 592.
doi: 10.1021/acs.organomet.7b00903 |
[37] |
Zhao W. T.; Gao F.; Zhao D. Angew. Chem., Int. Ed. 2018, 57, 6329.
doi: 10.1002/anie.v57.21 |
[38] |
Wang X. C.; Wang H. R.; Xu X.; Zhao D. Eur. J. Org. Chem. 2021, 2021, 3039.
doi: 10.1002/ejoc.v2021.21 |
[39] |
Zhu M. H.; Zhang X. W.; Usman M.; Cong H.; Liu W. B. ACS Catal. 2021, 11, 5703.
doi: 10.1021/acscatal.1c00975 |
[40] |
Oshima K.; Yorimitsu H.; Hirano K. J. Am. Chem. Soc. 2007, 129, 6094.
pmid: 17441723 |
[41] |
Zhang J. Y.; Yan N.; Ju C. W.; Zhao D. Angew. Chem., Int. Ed. 2021, 60, 25723.
doi: 10.1002/anie.v60.49 |
[42] |
Yin G. W.; Xu L. W. Chin. J. Org. Chem. 2021, 41, 4839 (in Chinese).
doi: 10.6023/cjoc202100094 |
(尹官武, 徐利文, 有机化学, 2021, 41, 4839.)
doi: 10.6023/cjoc202100094 |
|
[43] |
Zhang Q. W.; An K.; Liu L. C.; Guo S. X.; Jiang C. R.; Guo H. F.; He W. Angew. Chem., Int. Ed. 2016, 55, 6319.
doi: 10.1002/anie.v55.21 |
[44] |
Zhang L. X.; An K.; Wang Y.; Wu Y. D.; Zhang X. H.; Yu Z. X.; He W. J. Am. Chem. Soc. 2021, 143, 3571.
doi: 10.1021/jacs.0c13335 |
[45] |
Zhang Q. W.; An K.; Liu C.; Zhang Q.; Guo H. F.; He W. Angew. Chem., Int. Ed. 2017, 56, 1125.
doi: 10.1002/anie.v56.4 |
[46] |
An K.; Ma W.; Liu L. C.; He T.; Guan G.; Zhang Q. W.; He W. Nat. Commun. 2022, 13, 847.
doi: 10.1038/s41467-022-28439-w |
[47] |
He T.; Li B.; Liu L. C.; Ma W. P.; He W. Chem.-Eur. J. 2021, 27, 5648.
doi: 10.1002/chem.v27.18 |
[48] |
Weyenberg D. R.; Nelson L. E. J. Org. Chem. 1965, 30, 2618.
doi: 10.1021/jo01019a027 |
[49] |
Chen S.; He X.; Jin C.; Zhang W.; Yang Y.; Liu S.; Lan Y.; Houk K. N.; Shen X. Angew. Chem., Int. Ed. 2022, 61, e202213431.
|
[50] |
Tanaka Y.; Nishigaki A.; Kimura Y.; Yamashita M. Appl. Organomet. Chem. 2001, 15, 667.
doi: 10.1002/(ISSN)1099-0739 |
[1] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[2] | 高晓阳, 翟锐锐, 陈训, 王烁今. 碳酸亚乙烯酯参与C—H键活化反应的研究进展[J]. 有机化学, 2023, 43(9): 3119-3134. |
[3] | 陈新强, 张敬. 伯醇的脱羟甲基反应的研究进展[J]. 有机化学, 2023, 43(8): 2711-2719. |
[4] | 徐光利, 许静, 徐海东, 崔香, 舒兴中. 过渡金属催化烯烃和炔烃合成1,3-共轭二烯化合物研究进展[J]. 有机化学, 2023, 43(6): 1899-1933. |
[5] | 户晓兢, 郭斐翔, 朱润青, 周柄棋, 张涛, 房立真. 对烷氧基酚的合成及其去芳构化后的合成应用[J]. 有机化学, 2023, 43(6): 2239-2244. |
[6] | 庞明杨, 常宏宏, 冯璋, 张娟. 过渡金属催化吲哚的串联去芳构化反应研究进展[J]. 有机化学, 2023, 43(4): 1271-1291. |
[7] | 蒙玲, 汪君. 硫代黄烷酮类衍生物的合成研究进展[J]. 有机化学, 2023, 43(3): 873-891. |
[8] | 段康慧, 唐俊龙, 伍婉卿. 稠杂环化合物的合成及其抗肿瘤活性研究进展[J]. 有机化学, 2023, 43(3): 826-854. |
[9] | 吴孔川, 卢铠洪, 林建斌, 张慧君. 莱啉酰亚胺类化合物的邻位C—H键功能化研究进展[J]. 有机化学, 2023, 43(3): 1000-1011. |
[10] | 贾海瑞, 邱早早. 过渡金属催化硼-氢键活化合成含硼-杂原子键邻碳硼烷衍生物的研究进展[J]. 有机化学, 2023, 43(3): 1045-1068. |
[11] | 孙婧, 张萌萌, 锅小龙, 王琪, 王陆瑶. 无过渡金属条件下二芳基硒化合物的合成[J]. 有机化学, 2023, 43(12): 4251-4260. |
[12] | 秦思凝. 芳香卤代物C—S偶联反应的研究进展[J]. 有机化学, 2023, 43(11): 3761-3783. |
[13] | 张维露, 陈绍维, 沈晓. 镍催化苯并硅杂环丁烷与酰基硅烷的[4+2]环化反应[J]. 有机化学, 2023, 43(10): 3635-3643. |
[14] | 曾燕, 叶飞. 不对称催化构建硅立体中心化合物的新反应体系研究进展[J]. 有机化学, 2023, 43(10): 3388-3413. |
[15] | 袁成, 潘长多. 以7-氮杂吲哚为内在导向基团的N-芳基C—H官能化研究进展[J]. 有机化学, 2023, 43(1): 156-170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||