综述与进展

羧酸脱羧羟基化反应研究进展

  • 赵红琼 ,
  • 于淼 ,
  • 宋冬雪 ,
  • 贾琦 ,
  • 刘颖杰 ,
  • 季宇彬 ,
  • 许颖
展开
  • a 哈尔滨商业大学药学院 哈尔滨 150076
    b 黑龙江护理高等专科学校 哈尔滨 150086
共同第一作者.

收稿日期: 2023-06-05

  修回日期: 2023-08-09

  网络出版日期: 2023-09-08

基金资助

黑龙江省自然科学基金(LH2020H068); 及黑龙江省教育厅创新人才(UNPYSCT-2018139)

Progress on Decarboxylation and Hydroxylation of Carboxylic Acids

  • Hongqiong Zhao ,
  • Miao Yu ,
  • Dongxue Song ,
  • Qi Jia ,
  • Yingjie Liu ,
  • Yubin Ji ,
  • Ying Xu
Expand
  • a School of Pharmacy, Harbin University of Commerce, Harbin 150076
    b Heilongjiang Nursing College, Harbin 150086
These authors contributed equally to this work.

Received date: 2023-06-05

  Revised date: 2023-08-09

  Online published: 2023-09-08

Supported by

Natural Science Foundation of Heilongjiang Province(LH2020H068); Innovative Talent Project of Ministry of Education, Heilongjiang Province(UNPYSCT-2018139)

摘要

羧酸是廉价易得、稳定性好且功能多样的分子, 羧酸脱羧羟基化提供了从稳定易得的羧酸原料通过良性单碳切除还原直接快速获得重要醇分子的途径, 醇类化合物作为重要功能性分子在各领域的应用随处可见, 因此在有机合成和自然界中是一种非常重要和有用的转化. 主要从过渡金属催化、光催化、电催化及其他类型催化方面, 分类总结了脱羧羟基化反应得到相应伯醇、仲醇和叔醇的研究进展, 并探讨了部分反应可能的机理和适用范围. 其中过渡金属催化出现较早, 生成叔醇产率较高, 但底物普适性不强, 而光催化反应条件温和, 环境污染小, 对生成伯仲叔醇均适用.

本文引用格式

赵红琼 , 于淼 , 宋冬雪 , 贾琦 , 刘颖杰 , 季宇彬 , 许颖 . 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024 , 44(1) : 70 -84 . DOI: 10.6023/cjoc202306005

Abstract

Carboxylic acids are inexpensive, readily available, stable and functionally diverse molecules, and alcohols are used as important functional molecules in a variety of applications. Therefore, decarboxylative hydroxylation of carboxylic acid provides a direct and rapid route to important alcohol molecules from stabilized and easily obtainable carboxylic acid feedstocks through benign single carbon excision reductions, which is a very important and useful transformation in organic synthesis and nature. The research progress on decarboxylative hydroxylation reactions to obtain the corresponding primary, secondary and tertiary alcohols, mainly in terms of transition metal catalysis, photocatalysis, electrocatalysis and other types of catalysis, is highlighted with an emphasis on the possible mechanisms and applicable scope of these different reactions. Among them, transition metal catalysis emerged earlier and produced tertiary alcohols in higher yields, but with less universal substrates, whereas photocatalysis is a mild reaction with low environmental pollution and is suitable for the production of primary, secondary and tertiary alcohols.

参考文献

[1]
(a) Devine, P. N.; Howard, R. M.; Kumar, R.; Thompson, M. P.; Truppo, M. D.; Turner, N. Nat. Rev. Chem. 2018, 2, 409.
[1]
(b) Simic?, S.; Zukic?, E.; Schmermund, L.; Faber, K.; Winkler, C. K.; Kroutil, W. Chem. Rev. 2022, 122, 1052.
[2]
(a) Schwartz, R. E.; Helms, G. L.; Bolessa, E. A.; Wilson, K. E.; Giacobbe, R. A.; Tkacz, J. S.; Bills, G. F.; Liesch, J. M.; Zink, D. L.; Curotto, J. E.; Pramanik, B.; Onishi, J. C. Tetrahedron 1994, 50, 1675.
[2]
(b) Coutrot, P.; Claudel, S.; Didierjean, C.; Grison, C. Bioorg. Med. Chem. Lett. 2006, 16, 417.
[2]
(c) Corey, E. J.; Reichard, G. A. J. Am. Chem. Soc. 1992, 114, 10677.
[2]
(d) Uno, H.; Baldwin, J. E.; Russell, A. T. J. Am. Chem. Soc. 1994, 116, 2139.
[3]
Xu, S.-C.; Zhu, S.-J.; Bi, L.-W.; Chen, Y.-X.; Wang, J.; Lu, Y.-J.; Gu, Y.; Zhao, Z.-D. Chin. Chem. Lett. 2017, 28, 575.
[4]
Xu, X.-Z.; Zhang, F.; Huang, S.; Zhang, Z.-Q.; Ke, F. Chin. J. Org. Chem. 2020, 40, 2912 (in Chinese).
[4]
(许秀枝, 张帆, 黄胜, 张志强, 柯方, 有机化学, 2020, 40, 2912.)
[5]
Wang, Y.-L.; Huang, Y.-B.; Xi, H.-P. Organic Chemistry, Chemical Industry Press, Beijing, 2020, p. 1 (in Chinese).
[5]
(王永丽, 黄永斌, 席会平, 有机化学, 化学工业出版社, 北京, 2020, p. 1.)
[6]
(a) Totah, R. A.; Hanzlik, R. P. J. Am. Chem. Soc. 2002, 124, 10000.
[6]
(b) Wo, J.; Kong, D.; Brock, N. L.; Xu, F.; Zhou, X.; Deng, Z.; Lin, S. ACS Catal. 2016, 6, 2831.
[6]
(c) Zhang, Z.; Xie, S.; Cheng, B.; Zhai, H.; Li, Y. J. Am. Chem. Soc. 2019, 141, 7147.
[7]
(a) Beckett, A. H.; Rowland, M. J. Pharm. Pharmacol. 1965, 17, 628.
[7]
(b) Dring, L. G.; Smith, R. L.; Williams, R. T. Biochem. J. 1970, 116, 425.
[7]
(c) El-Haj, B. M.; Ahmed, S. B. M. Molecules 2020, 25, 1937.
[8]
(a) Komuro, M.; Nagatsu, Y.; Higuchi, T.; Hirobe, M. Tetrahedron Lett. 1992, 33, 4949.
[8]
(b) Komuro, M.; Higuchi, T.; Hirobe, M. Bioorg. Med. Chem. 1995, 3, 55.
[9]
(a) Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030.
[9]
(b) Xuan, J.; Zhang, Z.; Xiao, W. Angew. Chem., Int. Ed. 2015, 54, 15632.
[9]
(c) Moon, P. J.; Lundgren, R. J. ACS Catal. 2020, 10, 1742.
[9]
(d) Zeng, Z.; Feceu, A.; Sivendran, N.; Goo?en, L. J. Adv. Synth. Catal. 2021, 363, 2678.
[9]
(e) Varenikov, A.; Shapiro, E.; Gandelman, M. Chem. Rev. 2021, 121, 412.
[10]
(a) Sakakibara, Y.; Ito, E.; Fukushima, T.; Murakami, K.; Itami, K. Chem.-Eur. J. 2018, 24, 9254.
[10]
(b) Kong, D.; Moon, P. J.; Bsharat, O.; Lundgren, R. J. Angew. Chem., Int. Ed. 2020, 59, 1313.
[10]
(c) Nguyen, V. T.; Nguyen, V. D.; Haug, G. C.; Vuong, N. T. H.; Dang, H. T.; Arman, H. D.; Larionov, O. V. Angew. Chem., Int. Ed. 2020, 59, 7921.
[10]
(d) Narobe, R.; Murugesan, K.; Schmid, S.; K?nig, B. ACS Catal. 2022, 12, 809.
[10]
(e) Li, Q. Y.; Gockel, S. N.; Lutovsky, G. A.; DeGlopper, K. S.; Baldwin, N. J.; Bundesmann, M. W.; Tucker, J. W.; Bagley, S. W.; Yoon, T. P. Nat. Chem. 2022, 14, 94.
[11]
(a) Senaweera, S.; Cartwright, K. C.; Tunge, J. A. J. Org. Chem. 2019, 84, 12553.
[11]
(b) Martínez, á. M.; Hayrapetyan, D.; van Lingen, T.; Dyga, M.; Goo?en, L. J. Nat. Commun. 2020, 11, 4407.
[11]
(c) Maeda, B.; Sakakibara, Y.; Murakami, K.; Itami, K. Org. Lett. 2021, 23, 5113.
[12]
Anderson, J. M.; Kochi, J. K. J. Am. Chem. Soc. 1970, 92, 2450.
[13]
DeKlein, W. J.; Kooyman, E. C. J. Catal. 1965, 4, 626.
[14]
Anderson, J.; Kochi, J. K. J. Org. Chem. 1970, 35, 986.
[15]
Trahanovsky, W. S.; Cramer, J.; Brixius, D. W. J. Am. Chem. Soc. 1974, 96, 1077.
[16]
Komuro, M.; Nagatsu, Y.; Higuchi, T.; Hirobe, M. Tetrahedron Lett. 1992, 33, 4949.
[17]
(a) Kobayashi, H.; Higuchi, T.; Kaizu, Y.; Osada, H.; Aoki, M. Bull. Chem. Soc. Jpn. 1975, 48, 3137.
[17]
(b) van der Made, A. W.; Hoppenbrouwer, E. J. H.; Nolte, R. J. M.; Drenth, W. Recl. Trav. Chim. Pays-Bas 1988, 107, 15.
[18]
Tangestaninejad, S.; Mirkhani, V. J. Chem. Res., Synop. 1998, 820.
[19]
Mirkhani, V.; Tangestaninejad, S.; Moghadam, M.; Moghbel, M. Bioorg. Med. Chem. 2004, 12, 903.
[20]
Mirkhani, V.; Tangestaninejad, S.; Moghadam, M.; Karimian, Z. Bioorg. Med. Chem. Lett. 2003, 13, 3433.
[21]
Haldar, P.; Ray, J. K. Tetrahedron Lett. 2008, 49, 3659.
[22]
(a) Nair, V.; Panicker, S. B.; Nair, L. G.; George, T. G.; Augustine, A. Synlett 2003, 156.
[22]
(b) Nair, V.; Balagopal, L.; Rajan, R.; Mathew, J. Acc. Chem. Res. 2004, 37, 21.
[22]
(c) Nair, V.; Deepthi, A. Chem. Rev. 2007, 107, 1862.
[22]
(d) Fujioka, H.; Hirose, H.; Ohba, Y.; Murai, K.; Nakahara, K.; Kita, Y. Tetrahedron 2007, 63, 625.
[23]
Yu, Q.; Zhou, D. L.; Liu, Y. Y.; Huang, X. J.; Song, C. L.; Ma, J. J.; Li, J. K. Org. Lett. 2023, 25, 47.
[24]
(a) Wang, Z.; Zhu, L.; Yin, F.; Su, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 4258.
[24]
(b) Yin, F.; Wang, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 10401.
[24]
(c) Liu, C.; Wang, X.; Li, Z.; Cui, L.; Li, C. J. Am. Chem. Soc. 2015, 137, 9820.
[24]
(d) Liu, X.; Wang, Z.; Cheng, X.; Li, C. J. Am. Chem. Soc. 2012, 134, 14330.
[24]
(e) Cui, L.; Chen, H.; Liu, C.; Li, C. Org. Lett. 2016, 18, 2188.
[24]
(f) Tan, X.; Song, T.; Wang, Z.; Chen, H.; Cui, L.; Li, C. Org. Lett. 2017, 19, 1634.
[24]
(g) Dong, Y.; Wang, Z.; Li, C. Nat. Commun. 2017, 8, 277.
[24]
(h) Patel, N. R.; Flowers, R. A. J. Org. Chem. 2015, 80, 5834.
[24]
(l) Zhu, Y.; Li, X.; Wang, X.; Huang, X.; Shen, T.; Zhang, Y.; Sun, X.; Zou, M.; Song, S.; Jiao, N. Org. Lett. 2015, 17, 4702.
[24]
(j) Tan, X.; Liu, Z.; Shen, H.; Zhang, P.; Zhang, Z.; Li, C. J. Am. Chem. Soc. 2017, 139, 12430.
[25]
(a) Goo?en, L. J.; Linder, C.; Rodríguez, N.; Lange, P. P.; Fromm, A. Chem. Commun. 2009, 46, 7173.
[25]
(b) Goo?en, L. J.; Rodríguez, N.; Linder, C.; Lange, P. P.; Fromm, A. ChemCatChem 2010, 2, 430.
[25]
(c) Li, Y.; Ge, L.; Muhammad, M. T.; Bao, H. Synthesis 2017, 49, 5263.
[25]
(d) Jian, W.; Ge, L.; Jiao, Y.; Qian, B.; Bao, H. Angew. Chem., Int. Ed. 2017, 56, 3650.
[26]
Thorpe, W. G.; Kochi, J. K. J. Inorg. Nucl. Chem. 1971, 33, 3958.
[27]
Kamijo, S.; Amaoka, Y.; Inoue, M. Tetrahedron Lett. 2011, 52, 4654.
[28]
Patel, N. R.; Flowers, R. A. J. Org. Chem. 2015, 80, 5834.
[29]
Jayakanthan, K.; Madhusudanan, K. P.; Vankar, Y. D. Tetrahedron 2004, 60, 397.
[30]
Keith, D. J.; Townsend, S. D. Carbohydr. Res. 2017, 442, 20.
[31]
Phae-nok, S.; Kuhakarn, C.; Leowanawat, P.; Reutrakul, V.; Soorukram, D. Synlett 2022, 33, 1323.
[32]
Sheldon, R. A.; Kochi, J. K. J. Am. Chem. Soc. 1968, 90, 6688.
[33]
(a) Barton, D. H. R.; Crich, D.; Motherwell, W. B. J. Chem. Soc., Chem. Commun. 1984, 242.
[33]
(b) Barton, D. H. R.; Crich, D.; Motherwell, W. B. Tetrahedron 1985, 41, 3901.
[33]
(c) Liu, C.; Wang, X.; Li, Z.; Cui, L.; Li, C. J. Am. Chem. Soc. 2015, 137, 9820.
[34]
Crich, D.; Quintero, L. Chem. Rev. 1989, 89, 1413.
[35]
Barton, D. H. R.; Gero, S. D.; Holliday, P.; Quiclet-Sire, B.; Zard, S. Z. Tetrahedron 1998, 54, 6751.
[36]
Barton, D. H. R.; Zard, S. Z. Pure Appl. Chem. 1986, 58, 675.
[37]
Okada, K.; Okubo, K.; Oda, M. Tetrahedron Lett. 1992, 33, 83.
[38]
Song, H.-T.; Ding, W.; Zhou, Q.-Q.; Liu, J.; Lu, L.-Q.; Xiao, W.-J. J. Org. Chem. 2016, 81, 7250.
[39]
Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Lett. 2015, 17, 4830.
[40]
(a) Ohkubo, K.; Suga, K.; Morikawa, K.; Fukuzumi, S. J. Am. Chem. Soc. 2003, 125, 12850.
[40]
(b) Kotani, H.; Ohkubo, K.; Fukuzumi, S. J. Am. Chem. Soc. 2004, 126, 15999.
[41]
(a) Cassani, C.; Bergonzini, G.; Wallentin, C.-J. Org. Lett. 2014, 16, 4228.
[41]
(b) Chinzei, T.; Miyazawa, K.; Yasu, Y.; Koike, T.; Akita, M. RSC Adv. 2015, 5, 21297.
[41]
(c) Wu, X.-X.; Meng, C.-N.; Yuan, X.-Q.; Jia, X.-T.; Qian, X.-H.; Ye, J.-X. Chem. Commun. 2015, 51, 11864.
[41]
(d) Wang, K.; Meng, L.-G.; Zhang, Q.; Wang, L. Green Chem. 2016, 18, 2864.
[42]
(a) Su, Y.-J.; Zhang, L.-R.; Jiao, N. Org. Lett. 2011, 13, 2168.
[42]
(b) Yi, H.; Bian, C.-L.; Hu, X.; Niu, L.-B.; Lei, A. Chem. Commun. 2015, 51, 14046.
[42]
(c) Jung, J.; Kim, J.; Park, G.; You, Y.-M.; Cho, E. J. Adv. Synth. Catal. 2016, 358, 74.
[42]
(d) Wang, H.-M.; Lu, Q.-Q.; Qian, C.H.; Liu, C.; Liu, W.; Chen, K.; Lei, A. Angew. Chem., Int. Ed. 2016, 55, 1094.
[43]
Sakakibara, Y.; Cooper, P.; Murakami, K.; Itami, K. Chem.-Asian J. 2018, 13, 2410.
[44]
(a) Ohkubo, K.; Suga, K.; Morikawa, K.; Fukuzumi, S. J. Am. Chem. Soc. 2003, 125, 12850.
[44]
(b) Ohkubo, K.; Mizushima, K.; Iwata, R.; Souma, K.; Suzuki, N. Fukuzumi, S. Chem. Commun. 2010, 46, 601.
[44]
(c) Yi, H.; Bian, C.; Hu, X.; Niu, L.; Lei, A. Chem. Commun. 2015, 51, 14046.
[45]
Zheng, C.; Wang, Y.-T.; Xu, Y.-R.; Chen, Z.; Chen, G.-Y.; Liang, S.-H. Org. Lett. 2018, 20, 4824.
[46]
Shirase, S.; Tamaki, S.; Shinohara, K.; Hirosawa, K.; Tsurugi, H.; Satoh, T.; Mashima, K. J. Am. Chem. Soc. 2020, 142, 5668.
[47]
Sheldon, R. A.; Kochi, J. K. J. Am. Chem. Soc. 1968, 90, 6688.
[48]
Yatham, V. R.; Bellotti, P.; Ko?nig, B. Chem. Commun. 2019, 55, 3489.
[49]
(a) Partenheimer, W. J. Mol. Catal. A: Chem. 2003, 206, 105.
[49]
(b) Hermans, I.; Peeters, J.; Vereecken, L.; Jacobs, P. A. ChemPhysChem 2007, 8, 2678.
[49]
(c) Wang, X.; Cao, X.; Hu, X.; Li, G.; Zhu, L.; Hu, C. J. Mol. Catal. A: Chem. 2012, 357, 1.
[50]
Khan, S. N.; Zaman, M. K.; Li, R.; Sun, Z. J. Org. Chem. 2020, 85, 5019.
[51]
Li, P.; Zbieg, J. R.; Terrett, J. A. ACS Catal. 2021, 11, 10997.
[52]
Coleman, J. P.; Lines, R.; Utley, J. H. P.; Weedon, B. C. L. J. Chem. Soc., Perkin Trans. 2 1974, 1064.
[53]
Xiang, J.; Shang, M.; Kawamata, Y.; Lundberg, H.; Reisberg, S.H.; Chen, M.; Mykhailiuk, P.; Beutner, G.; Collins, M. R.; Davies, A.; Del Bel, M.; Gallego, G. M.; Spangler, J. E.; Starr, J.; Yang, S.; Blackmond, D. G.; Baran, P. S. Nature 2019, 573, 398.
[54]
(a) Boto, A.; Herna?ndez, R.; Sua?rez, E. Tetrahedron Lett. 1999, 40, 5945.
[54]
(b) Boto, A.; Herna?ndez, R.; Sua?rez, E. Tetrahedron Lett. 2000, 41, 2495.
[54]
(c) Boto, A.; Herna?ndez, R.; Sua?rez, E. J. Org. Chem. 2000, 65, 4930.
[55]
Yamamoto, S.; Katagiri, M.; Maeno, H.; Hayaiahi, O. J. Biol. Chem. 1965, 240, 3408.
[56]
Katagiri, M.; Maeno, H.; Yamamoto, S.; Hayaishi, O.; Kitano, T.; Oae, S. J. Biol. Chem. 1965, 240, 3414.
[57]
Katagiri, M.; Takemori, S.; Suzuki, K.; Yasuda, H. J. Biol. Chem. 1966, 241, 5675.
[58]
Uemura, T.; Kita, A.; Watanabe, Y.; Adachi, M.; Kuroki, R.; Morimoto, Y. Biochem. Biophys. Res. Commun. 2016, 469, 158.
文章导航

/