亚硝基苯参与的电化学串联环化反应构建喹啉/吡咯
收稿日期: 2023-07-03
修回日期: 2023-08-16
网络出版日期: 2023-09-15
基金资助
国家自然科学基金(22271085)
Electrochemical Cascade Cyclization Reactions of Nitrosobenzenes in Construction of Quinolines and Pyrroles
Received date: 2023-07-03
Revised date: 2023-08-16
Online published: 2023-09-15
Supported by
National Natural Science Foundation of China(22271085)
杨帆 , 方婷 , 杨桂春 , 高梦 . 亚硝基苯参与的电化学串联环化反应构建喹啉/吡咯[J]. 有机化学, 2024 , 44(3) : 1021 -1030 . DOI: 10.6023/cjoc202307002
A novel electrochemical cascade cyclization between nitrosobenzene and electron-deficient alkynes was developed in this work. The use of electroreduction for the activation of nitrosobenzene which highlighted the unique possibilities associated with electrochemical activation methods. This protocol represents a simple, efficient, and environmentally benign way to construct substituted quinolines and pyrroles in good yields with high selectivity.
Key words: electrosynthesis; cascade cyclization; nitrosobenzene
| [1] | (a) Pozharskii A. F.; Katritzky A. R.; Soldatenkov A. T. Heterocycles in Life and Society: an Introduction to Heterocyclic Chemistry, Biochemisttry, and Applications, 2nd ed., Wiley, Chichester, 2011. |
| [1] | (b) Katritzky A. R. Comprehensive Heterocyclic Chemistry III, 1st ed.ed., Elsevier, Amsterdam, 2008. |
| [2] | (a) Huang S; Huo H.; Li W.; Hong R. Chin. J. Org. Chem. 2012, 32, 1776. (in Chinese) |
| [2] | ( 黄莎华, 霍华兴, 李文华, 洪然, 有机化学, 2012, 32, 1776.) |
| [2] | (b) Adam W.; Krebs O. Chem. Rev. 2003, 103, 4131. |
| [2] | (c) Gao Y.; Yang S.; Xiao W.; Nie J.; Hu X.-Q. Chem. Commun. 2020, 56, 13719. |
| [2] | (d) Huang J.; Chen Z.; Yuan J.; Peng Y. Asian J. Org. Chem. 2016, 5, 951. |
| [2] | (e) Yamamoto H.; Momiyama N. Chem. Commun. 2005, 3514. |
| [3] | (a) Murru S.; Gallo A. A.; Srivastava R. S. ACS Catal. 2011, 1, 29. |
| [3] | (b) Murru S.; Gallo A. A.; Srivastava R. S. Eur. J. Org. Chem. 2011, 2011, 2035. |
| [3] | (c) Penoni A.; Volkmann J.; Nicholas K. M. Org. Lett. 2002, 4, 699. |
| [3] | (d) Penoni A.; Palmisano G.; Zhao Y.-L.; Houk K. N.; Volkman J.; Nicholas K. M. J. Am. Chem. Soc. 2009, 131, 653. |
| [4] | (a) Bodnar B. S.; Miller M. J. Angew. Chem., Int. Ed. 2011, 50, 5630. |
| [4] | (b) Momiyama N.; Yamamoto Y.; Yamamoto H. J. Am. Chem. Soc. 2007, 129, 1190. |
| [4] | (c) Maji B.; Yamamoto H. J. Am. Chem. Soc. 2015, 137, 15957. |
| [4] | (d) Carosso S.; Miller M. J. Org. Biomol. Chem. 2014, 12, 7445. |
| [5] | (a) Yang Y.; Ren H.-X.; Chen F.; Zhang Z.-B.; Zou Y.; Chen C.; Song X.-J.; Tian F.; Peng L.; Wang L.-X. Org. Lett. 2017, 19, 2805. |
| [5] | (b) Hu W.; Yu J.-T.; Liu S.; Jiang Y.; Cheng J. Org. Chem. Front. 2017, 4, 22. |
| [5] | (c) Purkait A.; Saha S.; Ghosh S.; Jana C. K. Chem. Commun. 2020, 56, 15032. |
| [5] | (d) Purkait A.; Roy S. K.; Srivastava H. K.; Jana C. K. Org. Lett. 2017, 19, 2540. |
| [5] | (e) Chakrabarty S.; Chatterjee I.; Wibbeling B.; Daniliuc C. G.; Studer A. Angew. Chem., Int. Ed. 2014, 53, 5964. |
| [5] | (f) Wu Y.; Liu Q.; Huang S.; Zhang C.; Wei W.; Li X. Org. Biomol. Chem. 2023, 21, 3669. |
| [5] | (g) Wang H.-X.; Zhang M.-M.; Xie M.-S.; Guo H.-M. Eur. J. Org. Chem. 2022, 2022, e202200604. |
| [5] | (h) Li X.; Feng T.; Li D.; Chang H.; Gao W.; Wei W. J. Org. Chem. 2019, 84, 4402. |
| [5] | (i) Huple D. B.; Ghorpade S.; Liu R.-S. Adv. Synth. Catal. 2016, 358, 1348. |
| [5] | (j) Reddy A. R.; Zhou C.-Y.; Che C.-M. Org. Lett. 2014, 16, 1048. |
| [5] | (k) Wu M.-Y.; He W.-W.; Liu X.-Y.; Tan B. Angew. Chem., Int. Ed. 2015, 54, 9409. |
| [6] | Qiu S.; Liang R.; Wang Y.; Zhu S. Org. Lett. 2019, 21, 2126. |
| [7] | Leach A. G.; Houk K. N. J. Am. Chem. Soc. 2002, 124, 14820. |
| [8] | (a) Ghosh S.; Kumar G.; Naveen; Pradhan S.; Chatterjee I. Chem. Commun. 2019, 55, 13590. |
| [8] | (b) Kawade R. K.; Liu R.-S. Angew. Chem., Int. Ed. 2017, 56, 2035. |
| [8] | (c) Kang J. Y.; Bugarin A.; Connell B. T. Chem. Commun. 2008, 3522. |
| [8] | (d) Liu J.; Skaria M.; Sharma P.; Chiang Y.-W.; Liu R.-S. Chem. Sci. 2017, 8, 5482. |
| [9] | For selected reviews, see: a Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485. |
| [9] | (b) K?rk?s M. D. Chem. Soc. Rev. 2018, 47, 5786. |
| [9] | (c) Ma C.; Fang P.; Mei T.-S. ACS Catal. 2018, 8, 7179. |
| [9] | (d) Tang S.; Liu Y.; Lei A. Chem 2018, 4, 27. |
| [9] | (e) Xiong P.; Xu H.-C. Acc. Chem. Res. 2019, 52, 3339. |
| [9] | (f) Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230. |
| [9] | For selected research works see: |
| [9] | (g) Chen D.; Yang X.; Wang D.; Li Y.; Shi L.; Liang D. Org. Chem. Front. 2023, 10, 2482 |
| [9] | (h) Ma Z.; Hu X.; Li Y.; Liang D.; Dong Y.; Wang B.; Li W. Org. Chem. Front. 2021, 8, 2208. |
| [10] | Yuan Y.; Lei A. Nat. Commun. 2020, 11, 802. |
| [11] | Wang D.; Tamizmani M.; Leng X.; Deng L. Chin. J. Chem. 2020, 38, 158. |
| [12] | (a) Gronchi G.; Courbis P.; Tordo P.; Mousset G.; Simonet J. J. Phys. Chem. 1983, 87, 1343. |
| [12] | (b) Mugnier Y.; Gard J.; Huang Y.; Couture Y.; Lasia A.; Lessard J. J. Org. Chem. 1993, 58, 5329. |
| [13] | Priewisch B.; Rück-Braun K. J. Org. Chem. 2005, 70, 2350. |
| [14] | Wang Y.; Hoye T. R. Org. Lett. 2018, 20, 4425. |
| [15] | Mal K.; Chatterjee S.; Bhaumik A.; Mukhopadhyay C. ChemistrySelect 2019, 4, 1776. |
/
| 〈 |
|
〉 |