研究论文

亚硝基苯参与的电化学串联环化反应构建喹啉/吡咯

  • 杨帆 ,
  • 方婷 ,
  • 杨桂春 ,
  • 高梦
展开
  • a 湖北大学化学化工学院 有机功能分子合成与应用教育部重点实验室 武汉 430062
    b 武汉大学化学与分子科学学院 武汉 430072

收稿日期: 2023-07-03

  修回日期: 2023-08-16

  网络出版日期: 2023-09-15

基金资助

国家自然科学基金(22271085)

Electrochemical Cascade Cyclization Reactions of Nitrosobenzenes in Construction of Quinolines and Pyrroles

  • Fan Yang ,
  • Ting Fang ,
  • Guichun Yang ,
  • Meng Gao
Expand
  • a Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecule, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062
    b College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072

Received date: 2023-07-03

  Revised date: 2023-08-16

  Online published: 2023-09-15

Supported by

National Natural Science Foundation of China(22271085)

摘要

报道了一种多取代喹啉/吡咯杂环化合物的电化学合成新方法. 反应以亚硝基苯和贫电子内炔为起始物, 在无需额外金属催化剂、室温条件下, 通过阴极单电子还原的策略, 选择性地还原亚硝基苯产生亚硝基自由基, 随后与炔烃进行串联环化反应, 绿色、高效地合成了一系列具有高附加值的多取代喹啉/吡咯杂环化合物.

本文引用格式

杨帆 , 方婷 , 杨桂春 , 高梦 . 亚硝基苯参与的电化学串联环化反应构建喹啉/吡咯[J]. 有机化学, 2024 , 44(3) : 1021 -1030 . DOI: 10.6023/cjoc202307002

Abstract

A novel electrochemical cascade cyclization between nitrosobenzene and electron-deficient alkynes was developed in this work. The use of electroreduction for the activation of nitrosobenzene which highlighted the unique possibilities associated with electrochemical activation methods. This protocol represents a simple, efficient, and environmentally benign way to construct substituted quinolines and pyrroles in good yields with high selectivity.

参考文献

[1]
(a) Pozharskii A. F.; Katritzky A. R.; Soldatenkov A. T. Heterocycles in Life and Society: an Introduction to Heterocyclic Chemistry, Biochemisttry, and Applications, 2nd ed., Wiley, Chichester, 2011.
[1]
(b) Katritzky A. R. Comprehensive Heterocyclic Chemistry III, 1st ed.ed., Elsevier, Amsterdam, 2008.
[2]
(a) Huang S; Huo H.; Li W.; Hong R. Chin. J. Org. Chem. 2012, 32, 1776. (in Chinese)
[2]
( 黄莎华, 霍华兴, 李文华, 洪然, 有机化学, 2012, 32, 1776.)
[2]
(b) Adam W.; Krebs O. Chem. Rev. 2003, 103, 4131.
[2]
(c) Gao Y.; Yang S.; Xiao W.; Nie J.; Hu X.-Q. Chem. Commun. 2020, 56, 13719.
[2]
(d) Huang J.; Chen Z.; Yuan J.; Peng Y. Asian J. Org. Chem. 2016, 5, 951.
[2]
(e) Yamamoto H.; Momiyama N. Chem. Commun. 2005, 3514.
[3]
(a) Murru S.; Gallo A. A.; Srivastava R. S. ACS Catal. 2011, 1, 29.
[3]
(b) Murru S.; Gallo A. A.; Srivastava R. S. Eur. J. Org. Chem. 2011, 2011, 2035.
[3]
(c) Penoni A.; Volkmann J.; Nicholas K. M. Org. Lett. 2002, 4, 699.
[3]
(d) Penoni A.; Palmisano G.; Zhao Y.-L.; Houk K. N.; Volkman J.; Nicholas K. M. J. Am. Chem. Soc. 2009, 131, 653.
[4]
(a) Bodnar B. S.; Miller M. J. Angew. Chem., Int. Ed. 2011, 50, 5630.
[4]
(b) Momiyama N.; Yamamoto Y.; Yamamoto H. J. Am. Chem. Soc. 2007, 129, 1190.
[4]
(c) Maji B.; Yamamoto H. J. Am. Chem. Soc. 2015, 137, 15957.
[4]
(d) Carosso S.; Miller M. J. Org. Biomol. Chem. 2014, 12, 7445.
[5]
(a) Yang Y.; Ren H.-X.; Chen F.; Zhang Z.-B.; Zou Y.; Chen C.; Song X.-J.; Tian F.; Peng L.; Wang L.-X. Org. Lett. 2017, 19, 2805.
[5]
(b) Hu W.; Yu J.-T.; Liu S.; Jiang Y.; Cheng J. Org. Chem. Front. 2017, 4, 22.
[5]
(c) Purkait A.; Saha S.; Ghosh S.; Jana C. K. Chem. Commun. 2020, 56, 15032.
[5]
(d) Purkait A.; Roy S. K.; Srivastava H. K.; Jana C. K. Org. Lett. 2017, 19, 2540.
[5]
(e) Chakrabarty S.; Chatterjee I.; Wibbeling B.; Daniliuc C. G.; Studer A. Angew. Chem., Int. Ed. 2014, 53, 5964.
[5]
(f) Wu Y.; Liu Q.; Huang S.; Zhang C.; Wei W.; Li X. Org. Biomol. Chem. 2023, 21, 3669.
[5]
(g) Wang H.-X.; Zhang M.-M.; Xie M.-S.; Guo H.-M. Eur. J. Org. Chem. 2022, 2022, e202200604.
[5]
(h) Li X.; Feng T.; Li D.; Chang H.; Gao W.; Wei W. J. Org. Chem. 2019, 84, 4402.
[5]
(i) Huple D. B.; Ghorpade S.; Liu R.-S. Adv. Synth. Catal. 2016, 358, 1348.
[5]
(j) Reddy A. R.; Zhou C.-Y.; Che C.-M. Org. Lett. 2014, 16, 1048.
[5]
(k) Wu M.-Y.; He W.-W.; Liu X.-Y.; Tan B. Angew. Chem., Int. Ed. 2015, 54, 9409.
[6]
Qiu S.; Liang R.; Wang Y.; Zhu S. Org. Lett. 2019, 21, 2126.
[7]
Leach A. G.; Houk K. N. J. Am. Chem. Soc. 2002, 124, 14820.
[8]
(a) Ghosh S.; Kumar G.; Naveen; Pradhan S.; Chatterjee I. Chem. Commun. 2019, 55, 13590.
[8]
(b) Kawade R. K.; Liu R.-S. Angew. Chem., Int. Ed. 2017, 56, 2035.
[8]
(c) Kang J. Y.; Bugarin A.; Connell B. T. Chem. Commun. 2008, 3522.
[8]
(d) Liu J.; Skaria M.; Sharma P.; Chiang Y.-W.; Liu R.-S. Chem. Sci. 2017, 8, 5482.
[9]
For selected reviews, see: a Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
[9]
(b) K?rk?s M. D. Chem. Soc. Rev. 2018, 47, 5786.
[9]
(c) Ma C.; Fang P.; Mei T.-S. ACS Catal. 2018, 8, 7179.
[9]
(d) Tang S.; Liu Y.; Lei A. Chem 2018, 4, 27.
[9]
(e) Xiong P.; Xu H.-C. Acc. Chem. Res. 2019, 52, 3339.
[9]
(f) Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230.
[9]
For selected research works see:
[9]
(g) Chen D.; Yang X.; Wang D.; Li Y.; Shi L.; Liang D. Org. Chem. Front. 2023, 10, 2482
[9]
(h) Ma Z.; Hu X.; Li Y.; Liang D.; Dong Y.; Wang B.; Li W. Org. Chem. Front. 2021, 8, 2208.
[10]
Yuan Y.; Lei A. Nat. Commun. 2020, 11, 802.
[11]
Wang D.; Tamizmani M.; Leng X.; Deng L. Chin. J. Chem. 2020, 38, 158.
[12]
(a) Gronchi G.; Courbis P.; Tordo P.; Mousset G.; Simonet J. J. Phys. Chem. 1983, 87, 1343.
[12]
(b) Mugnier Y.; Gard J.; Huang Y.; Couture Y.; Lasia A.; Lessard J. J. Org. Chem. 1993, 58, 5329.
[13]
Priewisch B.; Rück-Braun K. J. Org. Chem. 2005, 70, 2350.
[14]
Wang Y.; Hoye T. R. Org. Lett. 2018, 20, 4425.
[15]
Mal K.; Chatterjee S.; Bhaumik A.; Mukhopadhyay C. ChemistrySelect 2019, 4, 1776.
文章导航

/