有机化学 ›› 2024, Vol. 44 ›› Issue (3): 1021-1030.DOI: 10.6023/cjoc202307002 上一篇 下一篇
研究论文
收稿日期:
2023-07-03
修回日期:
2023-08-16
发布日期:
2024-04-02
基金资助:
Fan Yanga, Ting Fangb, Guichun Yanga, Meng Gaoa()
Received:
2023-07-03
Revised:
2023-08-16
Published:
2024-04-02
Contact:
*E-mail: drmenggao@163.com
Supported by:
文章分享
报道了一种多取代喹啉/吡咯杂环化合物的电化学合成新方法. 反应以亚硝基苯和贫电子内炔为起始物, 在无需额外金属催化剂、室温条件下, 通过阴极单电子还原的策略, 选择性地还原亚硝基苯产生亚硝基自由基, 随后与炔烃进行串联环化反应, 绿色、高效地合成了一系列具有高附加值的多取代喹啉/吡咯杂环化合物.
杨帆, 方婷, 杨桂春, 高梦. 亚硝基苯参与的电化学串联环化反应构建喹啉/吡咯[J]. 有机化学, 2024, 44(3): 1021-1030.
Fan Yang, Ting Fang, Guichun Yang, Meng Gao. Electrochemical Cascade Cyclization Reactions of Nitrosobenzenes in Construction of Quinolines and Pyrroles[J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 1021-1030.
Entry | Variation from the standard conditiona | Yieldb/% |
---|---|---|
1 | None | 74 |
2 | C/Ni | 38 |
3 | C/Zn | 51 |
4 | nBu4NClO4 instead of nBu4NI | Trace |
5 | nBu4NBr instead of nBu4NI | 15 |
6 | KI instead of nBu4NI | 36 |
7 | MeCN | 46 |
8 | 10 mA | 48 |
9 | 5 mA | 37 |
10 | No electricity | n.d. |
Entry | Variation from the standard conditiona | Yieldb/% |
---|---|---|
1 | None | 74 |
2 | C/Ni | 38 |
3 | C/Zn | 51 |
4 | nBu4NClO4 instead of nBu4NI | Trace |
5 | nBu4NBr instead of nBu4NI | 15 |
6 | KI instead of nBu4NI | 36 |
7 | MeCN | 46 |
8 | 10 mA | 48 |
9 | 5 mA | 37 |
10 | No electricity | n.d. |
[1] |
(a) Pozharskii A. F.; Katritzky A. R.; Soldatenkov A. T. Heterocycles in Life and Society: an Introduction to Heterocyclic Chemistry, Biochemisttry, and Applications, 2nd ed., Wiley, Chichester, 2011.
|
(b) Katritzky A. R. Comprehensive Heterocyclic Chemistry III, 1st ed.ed., Elsevier, Amsterdam, 2008.
|
|
[2] |
(a) Huang S; Huo H.; Li W.; Hong R. Chin. J. Org. Chem. 2012, 32, 1776. (in Chinese)
doi: 10.6023/cjoc201207026 |
( 黄莎华, 霍华兴, 李文华, 洪然, 有机化学, 2012, 32, 1776.)
doi: 10.6023/cjoc201207026 |
|
(b) Adam W.; Krebs O. Chem. Rev. 2003, 103, 4131.
doi: 10.1021/cr030004x |
|
(c) Gao Y.; Yang S.; Xiao W.; Nie J.; Hu X.-Q. Chem. Commun. 2020, 56, 13719.
doi: 10.1039/D0CC06023B |
|
(d) Huang J.; Chen Z.; Yuan J.; Peng Y. Asian J. Org. Chem. 2016, 5, 951.
doi: 10.1002/ajoc.v5.8 |
|
(e) Yamamoto H.; Momiyama N. Chem. Commun. 2005, 3514.
|
|
[3] |
(a) Murru S.; Gallo A. A.; Srivastava R. S. ACS Catal. 2011, 1, 29.
doi: 10.1021/cs100024n |
(b) Murru S.; Gallo A. A.; Srivastava R. S. Eur. J. Org. Chem. 2011, 2011, 2035.
|
|
(c) Penoni A.; Volkmann J.; Nicholas K. M. Org. Lett. 2002, 4, 699.
doi: 10.1021/ol017139e |
|
(d) Penoni A.; Palmisano G.; Zhao Y.-L.; Houk K. N.; Volkman J.; Nicholas K. M. J. Am. Chem. Soc. 2009, 131, 653.
doi: 10.1021/ja806715u |
|
[4] |
(a) Bodnar B. S.; Miller M. J. Angew. Chem., Int. Ed. 2011, 50, 5630.
doi: 10.1002/anie.v50.25 pmid: 25119424 |
(b) Momiyama N.; Yamamoto Y.; Yamamoto H. J. Am. Chem. Soc. 2007, 129, 1190.
pmid: 25119424 |
|
(c) Maji B.; Yamamoto H. J. Am. Chem. Soc. 2015, 137, 15957.
doi: 10.1021/jacs.5b11273 pmid: 25119424 |
|
(d) Carosso S.; Miller M. J. Org. Biomol. Chem. 2014, 12, 7445.
doi: 10.1039/c4ob01033g pmid: 25119424 |
|
[5] |
(a) Yang Y.; Ren H.-X.; Chen F.; Zhang Z.-B.; Zou Y.; Chen C.; Song X.-J.; Tian F.; Peng L.; Wang L.-X. Org. Lett. 2017, 19, 2805.
doi: 10.1021/acs.orglett.7b00893 pmid: 28485602 |
(b) Hu W.; Yu J.-T.; Liu S.; Jiang Y.; Cheng J. Org. Chem. Front. 2017, 4, 22.
doi: 10.1039/C6QO00540C pmid: 28485602 |
|
(c) Purkait A.; Saha S.; Ghosh S.; Jana C. K. Chem. Commun. 2020, 56, 15032.
doi: 10.1039/D0CC02650F pmid: 28485602 |
|
(d) Purkait A.; Roy S. K.; Srivastava H. K.; Jana C. K. Org. Lett. 2017, 19, 2540.
doi: 10.1021/acs.orglett.7b00832 pmid: 28485602 |
|
(e) Chakrabarty S.; Chatterjee I.; Wibbeling B.; Daniliuc C. G.; Studer A. Angew. Chem., Int. Ed. 2014, 53, 5964.
doi: 10.1002/anie.v53.23 pmid: 28485602 |
|
(f) Wu Y.; Liu Q.; Huang S.; Zhang C.; Wei W.; Li X. Org. Biomol. Chem. 2023, 21, 3669.
doi: 10.1039/D3OB00189J pmid: 28485602 |
|
(g) Wang H.-X.; Zhang M.-M.; Xie M.-S.; Guo H.-M. Eur. J. Org. Chem. 2022, 2022, e202200604.
pmid: 28485602 |
|
(h) Li X.; Feng T.; Li D.; Chang H.; Gao W.; Wei W. J. Org. Chem. 2019, 84, 4402.
doi: 10.1021/acs.joc.9b00299 pmid: 28485602 |
|
(i) Huple D. B.; Ghorpade S.; Liu R.-S. Adv. Synth. Catal. 2016, 358, 1348.
doi: 10.1002/adsc.v358.9 pmid: 28485602 |
|
(j) Reddy A. R.; Zhou C.-Y.; Che C.-M. Org. Lett. 2014, 16, 1048.
doi: 10.1021/ol4035098 pmid: 28485602 |
|
(k) Wu M.-Y.; He W.-W.; Liu X.-Y.; Tan B. Angew. Chem., Int. Ed. 2015, 54, 9409.
doi: 10.1002/anie.v54.32 pmid: 28485602 |
|
[6] |
Qiu S.; Liang R.; Wang Y.; Zhu S. Org. Lett. 2019, 21, 2126.
doi: 10.1021/acs.orglett.9b00426 |
[7] |
Leach A. G.; Houk K. N. J. Am. Chem. Soc. 2002, 124, 14820.
doi: 10.1021/ja012757b |
[8] |
(a) Ghosh S.; Kumar G.; Naveen; Pradhan S.; Chatterjee I. Chem. Commun. 2019, 55, 13590.
doi: 10.1039/C9CC07277B |
(b) Kawade R. K.; Liu R.-S. Angew. Chem., Int. Ed. 2017, 56, 2035.
doi: 10.1002/anie.v56.8 |
|
(c) Kang J. Y.; Bugarin A.; Connell B. T. Chem. Commun. 2008, 3522.
|
|
(d) Liu J.; Skaria M.; Sharma P.; Chiang Y.-W.; Liu R.-S. Chem. Sci. 2017, 8, 5482.
doi: 10.1039/C7SC01770G |
|
[9] |
For selected reviews, see: a Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
doi: 10.1021/acs.chemrev.7b00271 |
(b) Kärkäs M. D. Chem. Soc. Rev. 2018, 47, 5786.
doi: 10.1039/C7CS00619E |
|
(c) Ma C.; Fang P.; Mei T.-S. ACS Catal. 2018, 8, 7179.
doi: 10.1021/acscatal.8b01697 |
|
(d) Tang S.; Liu Y.; Lei A. Chem 2018, 4, 27.
doi: 10.1016/j.chempr.2017.10.001 |
|
(e) Xiong P.; Xu H.-C. Acc. Chem. Res. 2019, 52, 3339.
doi: 10.1021/acs.accounts.9b00472 |
|
(f) Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230.
doi: 10.1021/acs.chemrev.7b00397 |
|
For selected research works see:
|
|
(g) Chen D.; Yang X.; Wang D.; Li Y.; Shi L.; Liang D. Org. Chem. Front. 2023, 10, 2482
doi: 10.1039/D3QO00290J |
|
(h) Ma Z.; Hu X.; Li Y.; Liang D.; Dong Y.; Wang B.; Li W. Org. Chem. Front. 2021, 8, 2208.
doi: 10.1039/D1QO00168J |
|
[10] |
Yuan Y.; Lei A. Nat. Commun. 2020, 11, 802.
doi: 10.1038/s41467-020-14322-z |
[11] |
Wang D.; Tamizmani M.; Leng X.; Deng L. Chin. J. Chem. 2020, 38, 158.
doi: 10.1002/cjoc.v38.2 |
[12] |
(a) Gronchi G.; Courbis P.; Tordo P.; Mousset G.; Simonet J. J. Phys. Chem. 1983, 87, 1343.
doi: 10.1021/j100231a015 |
(b) Mugnier Y.; Gard J.; Huang Y.; Couture Y.; Lasia A.; Lessard J. J. Org. Chem. 1993, 58, 5329.
doi: 10.1021/jo00072a011 |
|
[13] |
Priewisch B.; Rück-Braun K. J. Org. Chem. 2005, 70, 2350.
pmid: 15760229 |
[14] |
Wang Y.; Hoye T. R. Org. Lett. 2018, 20, 4425.
doi: 10.1021/acs.orglett.8b01705 |
[15] |
Mal K.; Chatterjee S.; Bhaumik A.; Mukhopadhyay C. ChemistrySelect 2019, 4, 1776.
doi: 10.1002/slct.v4.5 |
[1] | 李龙龙, 何欣悦, 周龙生, 曲亨通, 冯承涛, 徐坤. 硫氰酸铵促进的[3+3]环化反应合成5-芳基吡唑并[1,5-a]嘧啶[J]. 有机化学, 2024, 44(9): 2832-2840. |
[2] | 邢运新, 闫登鸿, 温顺, 卜洁, 沈坤. 镍催化1,6-烯炔与芳基卤化物的反式还原芳基化环化[J]. 有机化学, 2024, 44(6): 1938-1948. |
[3] | 陈远航, 何劲宇, 张博, 王延钊, 孔令轩, 钱伟烽, 王娜娜, 段闻喜, 欧阳妍妍, 朱翠菊, 徐浩. 不对称电化学有机合成[J]. 有机化学, 2024, 44(3): 748-779. |
[4] | 何蔺恒, 夏稳, 周玉祥, 于贤勇. 电催化N-芳基甘氨酸和苯并[e][1,2,3]噁噻嗪-2,2-二氧化物的串联脱羧环化反应[J]. 有机化学, 2024, 44(3): 997-1004. |
[5] | 叶增辉, 刘华清, 张逢质. 有机光电催化合成研究进展[J]. 有机化学, 2024, 44(3): 840-870. |
[6] | 岁丹丹, 岑南楠, 龚若蕖, 陈阳, 陈文博. 无支持电解质条件下连续流电化学合成三氟甲基化氧化吲哚[J]. 有机化学, 2023, 43(9): 3239-3245. |
[7] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[8] | 任志军, 罗维纬, 周俊. 银介导的N-芳基丙烯酰胺串联环化反应研究进展[J]. 有机化学, 2023, 43(6): 2026-2039. |
[9] | 张俊颖, 赵晓静, 李干鹏, 何永辉. 室温下电化学合成保护型有机硼酸RB(dan)[J]. 有机化学, 2023, 43(5): 1815-1823. |
[10] | 潘永周, 蒙秀金, 王迎春, 何慕雪. 电化学固定CO2构建羧酸衍生物的研究进展[J]. 有机化学, 2023, 43(4): 1416-1434. |
[11] | 李靖鹏, 黄顺桃, 杨棋, 李伟强, 刘腾, 黄超. 利用连续流动技术合成(Z)-N-乙烯基取代N,O-缩醛[J]. 有机化学, 2023, 43(4): 1550-1558. |
[12] | 魏文婷, 李壮壮, 李婉迪, 李嘉琪, 石先莹. 纯水及空气中芳香羧酸和丙烯酸酯氧化偶联构筑苯酞的绿色方法[J]. 有机化学, 2023, 43(3): 1177-1186. |
[13] | 赵金晓, 魏彤辉, 柯森, 李毅. 可见光催化合成二氟烷基取代的多环吲哚化合物[J]. 有机化学, 2023, 43(3): 1102-1114. |
[14] | 黄嘉为, 李潇漫, 徐亮, 韦玉. α-酮酸与硫酚的电化学脱羧偶联: 一种合成硫代酸酯的新方法[J]. 有机化学, 2023, 43(2): 756-762. |
[15] | 刘东汉, 鲁席杭, 柴张梦洁, 杨浩琦, 孙瑜琳, 余富朝. 构建2H-吡咯-2-酮骨架的研究进展[J]. 有机化学, 2023, 43(1): 57-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||