可见光诱导有机光催化合成二氟乙基苯并噁嗪
收稿日期: 2023-07-28
修回日期: 2023-09-04
网络出版日期: 2023-09-15
基金资助
湖南省自然科学基金(2023JJ40528)
Visible-Light Induced Organophotocatalysis for the Synthesis of Difluoroethylated Benzoxazines
Received date: 2023-07-28
Revised date: 2023-09-04
Online published: 2023-09-15
Supported by
Natural Science Foundation of Hunan Province(2023JJ40528)
陈祥 , 欧阳文韬 , 李潇 , 何卫民 . 可见光诱导有机光催化合成二氟乙基苯并噁嗪[J]. 有机化学, 2023 , 43(12) : 4213 -4219 . DOI: 10.6023/cjoc202307026
Benzoxazines are important motif in pharmaceuticals and functional molecules. A visible-light induced photocatalytic strategy for the synthesis of difluoroethyl benzoxazines with organo-photocatalyst was developed. In the present protocol, a series of olefinic amides can be transferred to difluoroethylated benzoxazines via oxydifluoromethylation with CF2HSO2Na as difluoromethylating reagent, which is easily operated and good functional group tolerant.
| [1] | (a) Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, Wiley-VCH, Weinheim, 2013. |
| [1] | (b) Purser S.; Moore P. R.; Swallow S.; Gouverneur V. Chem. Soc. Rev. 2008, 37, 320. |
| [2] | (a) Shi L.; An D.; Mei G.-J. Org. Chem. Front. 2022, 9, 4192. |
| [2] | (b) Feng J.; Jia X.; Zhang S.; Lu K.; Cahard D. Org. Chem. Front. 2022, 9, 3598. |
| [2] | (c) Gui Q.-W.; Teng F.; Li Z.-C.; Xiong Z.-Y.; Jin X.-F.; Lin Y.-W.; Cao Z.; He W.-M. Chin. Chem. Lett. 2021, 32, 1907. |
| [2] | (d) Zhang S.; Li L.; Zhang J.; Zhang J.; Xue M.; Xu K. Chem. Sci. 2019, 10, 3181. |
| [2] | (e) Xiong P.; Xu H.-H.; Song J.; Xu H.-C. J. Am. Chem. Soc. 2018, 140, 2460. |
| [2] | (f) Zhao Y.; Huang W.; Zheng J.; Hu J. Org. Lett. 2011, 13, 5342. |
| [2] | (g) Ren X.; Liu Q.; Wang Z.; Chen X. Chin. Chem. Lett. 2023, 34, 107473. |
| [2] | (h) Qin W. B.; Xiong W.; Zhao Y. S.; Fu K. Z.; Su L.; Liu G. K. Org. Lett. 2021, 23, 8482. |
| [3] | (a) Meanwell N. A. J. Med. Chem. 2011, 54, 2529. |
| [3] | (b) Erickson J. A.; McLoughlin J. I. J. Org. Chem. 1995, 60, 1626. |
| [4] | Gauthier J. Y.; Belley M.; Deschenes D.; Fournier J. F.; Gagne S.; Gareau Y.; Hamel M.; Henault M.; Hyjazie H.; Kargman S.; Lavallee G.; Levesque J. F.; Li L.; Mamane Y.; Mancini J.; Morin N.; Mulrooney E.; Robichaud J.; Therien M.; Tranmer G.; Wang Z.; Wu J.; Black W. C. Bioorg. Med. Chem. Lett. 2011, 21, 2836. |
| [5] | (a) Gromachevskaya E. V.; Kvitkovskii F. V.; Kosulina T. P.; Kul'nevich V. G. Chem. Heterocycl. Compd. 2003, 39, 137. |
| [5] | (b) Zhang P.; Terefenko E. A.; Fensome A.; Wrobel J.; Winneker R.; Lundeen S.; Marschke K. B.; Zhang Z. J. Med. Chem. 2002, 45, 4379. |
| [5] | (c) Lu Y.-H.; Zhang Z.-T.; Wu H.-Y.; Zhou M.-H.; Song H.-Y.; Ji H.-T.; Jiang J.; Chen J.-Y.; He W.-M. Chin. Chem. Lett. 2023, 34, 108036. |
| [5] | (d) Jiang J.; Wang K.-L.; Li X.; Wu C.; Ji H.-T.; Chen X.; He W.-M. Chin. Chem. Lett. 2023, 34, 108699. |
| [6] | (a) Xie Q.; Long H.-J.; Zhang Q.-Y.; Tang P.; Deng J. J. Org. Chem. 2020, 85, 1882. |
| [6] | (b) Cao T.-T.; Zhang W.-K.; Qin F.-H.; Kang Q.-Q.; Dong Y.; Li Q.; Kang C.; Wei W.-T. ACS Sustainable Chem. Eng. 2020, 8, 16946. |
| [6] | (c) Zhang X.; Cao W.-B.; Xu X.-P.; Ji S.-J. Synthesis 2019, 51, 3805. |
| [6] | (d) Zhao J.-F.; Duan X.-H.; Yang H.; Guo L.-N. J. Org. Chem. 2015, 80, 11149. |
| [7] | (a) Babu S. S.; Varma A. A.; Gopinath P. Chem. Commun. 2022, 58, 1990. |
| [7] | (b) Wu J.; Zong Y.; Zhao C.; Yan Q.; Sun L.; Li Y.; Zhao J.; Ge Y.; Li Z. Org. Biomol. Chem. 2019, 17, 794. |
| [7] | (c) Liu T.; Zheng D.; Li Z.; Wu J. Adv. Synth. Catal. 2018, 360, 865. |
| [7] | (d) Wang J.; Sang R.; Chong X.; Zhao Y.; Fan W.; Li Z.; Zhao J. Chem. Commun. 2017, 53, 7961. |
| [7] | (e) Yang H.; Duan X. H.; Zhao J. F.; Guo L. N. Org. Lett. 2015, 17, 1998. |
| [7] | (f) Jana S.; Ashokan A.; Kumar S.; Verma A.; Kumar S. Org. Biomol. Chem. 2015, 13, 8411. |
| [7] | (g) Deng Q.-H.; Chen J.-R.; Wei Q.; Zhao Q.-Q.; Lua L.-Q.; Xiao W.-J. Chem. Commun. 2015, 51, 3537. |
| [7] | (h) Chu X.-Q.; Xu X.-P.; Meng H.; Ji S.-J. RSC Adv. 2015, 5, 67829. |
| [8] | (a) Marzo L.; Pagire S. K.; Reiser O.; Konig B. Angew. Chem., Int. Ed. 2018, 57, 10034. |
| [8] | (b) Wang Z.; Liu Q.; Liu R.; Ji Z.; Li Y.; Zhao X.; Wei W. Chin. Chem. Lett. 2022, 33, 1479. |
| [8] | (c) Song H.-Y.; Jiang J.; Wu C.; Hou J.-C.; Lu Y.-H.; Wang K.-L.; Yang T.-B.; He W.-M. Green Chem. 2023, 25, 3292. |
| [8] | (d) Lu Y.-H.; Mu S.-Y.; Li H.-X.; Jiang J.; Wu C.; Zhou M.-H.; Ouyang W.-T.; He W.-M. Green Chem. 2023, 25, 5539. |
| [8] | (e) Gui Q.-W.; Teng F.; Yu P.; Wu Y.-F.; Nong Z.-B.; Yang L.-X.; Chen X.; Yang T.-B.; He W.-M. Chin. J. Catal. 2023, 44, 111. |
| [8] | (f) Chen J. Y.; Wu H. Y.; Song H. Y.; Li H. X.; Jiang J.; Yang T. B.; He W. M. J. Org. Chem. 2023, 88, 8360. |
| [8] | (g) Lu Y.-H.; Wu C.; Hou J.-C.; Zhou M.-H.; Huang X.-J.; He W.-M. ACS Catal. 2023, 13, 13071. |
| [9] | Fu W.; Han X.; Zhu M.; Xu C.; Wang Z.; Ji B.; Hao X.-Q.; Song M.-P. Chem. Commun. 2016, 52, 13413. |
| [10] | (a) Zou Z.; Li H.; Huang M.; Zhang W.; Zhi S.; Wang Y.; Pan Y. Org. Lett. 2021, 23, 8252. |
| [10] | (b) Wang H.; Zhang J.; Shi J.; Li F.; Zhang S.; Xu K. Org. Lett. 2019, 21. |
| [10] | (c) Ruan Z.; Huang Z.; Xu Z.; Mo G.; Tian X.; Yu X. Y.; Ackermann L. Org. Lett. 2019, 21, 1237. |
| [11] | (a) Chen X.; Jiang J.; Huang X.-J.; He W.-M. Org. Chem. Front. 2023, 10, 3839. |
| [11] | (b) Natarajan P.; Chuskit D.; Priya; Manjeet New J. Chem. 2022, 46, 322. |
/
| 〈 |
|
〉 |