研究论文

可见光诱导有机光催化合成二氟乙基苯并噁嗪

  • 陈祥 ,
  • 欧阳文韬 ,
  • 李潇 ,
  • 何卫民
展开
  • 南华大学化学化工学院 湖南衡阳 411201

收稿日期: 2023-07-28

  修回日期: 2023-09-04

  网络出版日期: 2023-09-15

基金资助

湖南省自然科学基金(2023JJ40528)

Visible-Light Induced Organophotocatalysis for the Synthesis of Difluoroethylated Benzoxazines

  • Xiang Chen ,
  • Wen-Tao Ouyang ,
  • Xiao Li ,
  • Wei-Min He
Expand
  • School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001

Received date: 2023-07-28

  Revised date: 2023-09-04

  Online published: 2023-09-15

Supported by

Natural Science Foundation of Hunan Province(2023JJ40528)

摘要

苯并噁嗪是药物和功能分子中的重要结构. 报道了一种利用有机光催化剂在可见光诱导下合成二氟乙基苯并噁嗪的方法. 以二氟甲基亚磺酸钠作为二氟甲基化试剂, 通过烯烃的氧化二氟甲基化双官能团化反应, 可将一系列烯酰胺转化为二氟乙基苯并噁嗪类化合物, 该方法操作简单, 底物适用广泛.

本文引用格式

陈祥 , 欧阳文韬 , 李潇 , 何卫民 . 可见光诱导有机光催化合成二氟乙基苯并噁嗪[J]. 有机化学, 2023 , 43(12) : 4213 -4219 . DOI: 10.6023/cjoc202307026

Abstract

Benzoxazines are important motif in pharmaceuticals and functional molecules. A visible-light induced photocatalytic strategy for the synthesis of difluoroethyl benzoxazines with organo-photocatalyst was developed. In the present protocol, a series of olefinic amides can be transferred to difluoroethylated benzoxazines via oxydifluoromethylation with CF2HSO2Na as difluoromethylating reagent, which is easily operated and good functional group tolerant.

参考文献

[1]
(a) Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, Wiley-VCH, Weinheim, 2013.
[1]
(b) Purser S.; Moore P. R.; Swallow S.; Gouverneur V. Chem. Soc. Rev. 2008, 37, 320.
[2]
(a) Shi L.; An D.; Mei G.-J. Org. Chem. Front. 2022, 9, 4192.
[2]
(b) Feng J.; Jia X.; Zhang S.; Lu K.; Cahard D. Org. Chem. Front. 2022, 9, 3598.
[2]
(c) Gui Q.-W.; Teng F.; Li Z.-C.; Xiong Z.-Y.; Jin X.-F.; Lin Y.-W.; Cao Z.; He W.-M. Chin. Chem. Lett. 2021, 32, 1907.
[2]
(d) Zhang S.; Li L.; Zhang J.; Zhang J.; Xue M.; Xu K. Chem. Sci. 2019, 10, 3181.
[2]
(e) Xiong P.; Xu H.-H.; Song J.; Xu H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
[2]
(f) Zhao Y.; Huang W.; Zheng J.; Hu J. Org. Lett. 2011, 13, 5342.
[2]
(g) Ren X.; Liu Q.; Wang Z.; Chen X. Chin. Chem. Lett. 2023, 34, 107473.
[2]
(h) Qin W. B.; Xiong W.; Zhao Y. S.; Fu K. Z.; Su L.; Liu G. K. Org. Lett. 2021, 23, 8482.
[3]
(a) Meanwell N. A. J. Med. Chem. 2011, 54, 2529.
[3]
(b) Erickson J. A.; McLoughlin J. I. J. Org. Chem. 1995, 60, 1626.
[4]
Gauthier J. Y.; Belley M.; Deschenes D.; Fournier J. F.; Gagne S.; Gareau Y.; Hamel M.; Henault M.; Hyjazie H.; Kargman S.; Lavallee G.; Levesque J. F.; Li L.; Mamane Y.; Mancini J.; Morin N.; Mulrooney E.; Robichaud J.; Therien M.; Tranmer G.; Wang Z.; Wu J.; Black W. C. Bioorg. Med. Chem. Lett. 2011, 21, 2836.
[5]
(a) Gromachevskaya E. V.; Kvitkovskii F. V.; Kosulina T. P.; Kul'nevich V. G. Chem. Heterocycl. Compd. 2003, 39, 137.
[5]
(b) Zhang P.; Terefenko E. A.; Fensome A.; Wrobel J.; Winneker R.; Lundeen S.; Marschke K. B.; Zhang Z. J. Med. Chem. 2002, 45, 4379.
[5]
(c) Lu Y.-H.; Zhang Z.-T.; Wu H.-Y.; Zhou M.-H.; Song H.-Y.; Ji H.-T.; Jiang J.; Chen J.-Y.; He W.-M. Chin. Chem. Lett. 2023, 34, 108036.
[5]
(d) Jiang J.; Wang K.-L.; Li X.; Wu C.; Ji H.-T.; Chen X.; He W.-M. Chin. Chem. Lett. 2023, 34, 108699.
[6]
(a) Xie Q.; Long H.-J.; Zhang Q.-Y.; Tang P.; Deng J. J. Org. Chem. 2020, 85, 1882.
[6]
(b) Cao T.-T.; Zhang W.-K.; Qin F.-H.; Kang Q.-Q.; Dong Y.; Li Q.; Kang C.; Wei W.-T. ACS Sustainable Chem. Eng. 2020, 8, 16946.
[6]
(c) Zhang X.; Cao W.-B.; Xu X.-P.; Ji S.-J. Synthesis 2019, 51, 3805.
[6]
(d) Zhao J.-F.; Duan X.-H.; Yang H.; Guo L.-N. J. Org. Chem. 2015, 80, 11149.
[7]
(a) Babu S. S.; Varma A. A.; Gopinath P. Chem. Commun. 2022, 58, 1990.
[7]
(b) Wu J.; Zong Y.; Zhao C.; Yan Q.; Sun L.; Li Y.; Zhao J.; Ge Y.; Li Z. Org. Biomol. Chem. 2019, 17, 794.
[7]
(c) Liu T.; Zheng D.; Li Z.; Wu J. Adv. Synth. Catal. 2018, 360, 865.
[7]
(d) Wang J.; Sang R.; Chong X.; Zhao Y.; Fan W.; Li Z.; Zhao J. Chem. Commun. 2017, 53, 7961.
[7]
(e) Yang H.; Duan X. H.; Zhao J. F.; Guo L. N. Org. Lett. 2015, 17, 1998.
[7]
(f) Jana S.; Ashokan A.; Kumar S.; Verma A.; Kumar S. Org. Biomol. Chem. 2015, 13, 8411.
[7]
(g) Deng Q.-H.; Chen J.-R.; Wei Q.; Zhao Q.-Q.; Lua L.-Q.; Xiao W.-J. Chem. Commun. 2015, 51, 3537.
[7]
(h) Chu X.-Q.; Xu X.-P.; Meng H.; Ji S.-J. RSC Adv. 2015, 5, 67829.
[8]
(a) Marzo L.; Pagire S. K.; Reiser O.; Konig B. Angew. Chem., Int. Ed. 2018, 57, 10034.
[8]
(b) Wang Z.; Liu Q.; Liu R.; Ji Z.; Li Y.; Zhao X.; Wei W. Chin. Chem. Lett. 2022, 33, 1479.
[8]
(c) Song H.-Y.; Jiang J.; Wu C.; Hou J.-C.; Lu Y.-H.; Wang K.-L.; Yang T.-B.; He W.-M. Green Chem. 2023, 25, 3292.
[8]
(d) Lu Y.-H.; Mu S.-Y.; Li H.-X.; Jiang J.; Wu C.; Zhou M.-H.; Ouyang W.-T.; He W.-M. Green Chem. 2023, 25, 5539.
[8]
(e) Gui Q.-W.; Teng F.; Yu P.; Wu Y.-F.; Nong Z.-B.; Yang L.-X.; Chen X.; Yang T.-B.; He W.-M. Chin. J. Catal. 2023, 44, 111.
[8]
(f) Chen J. Y.; Wu H. Y.; Song H. Y.; Li H. X.; Jiang J.; Yang T. B.; He W. M. J. Org. Chem. 2023, 88, 8360.
[8]
(g) Lu Y.-H.; Wu C.; Hou J.-C.; Zhou M.-H.; Huang X.-J.; He W.-M. ACS Catal. 2023, 13, 13071.
[9]
Fu W.; Han X.; Zhu M.; Xu C.; Wang Z.; Ji B.; Hao X.-Q.; Song M.-P. Chem. Commun. 2016, 52, 13413.
[10]
(a) Zou Z.; Li H.; Huang M.; Zhang W.; Zhi S.; Wang Y.; Pan Y. Org. Lett. 2021, 23, 8252.
[10]
(b) Wang H.; Zhang J.; Shi J.; Li F.; Zhang S.; Xu K. Org. Lett. 2019, 21.
[10]
(c) Ruan Z.; Huang Z.; Xu Z.; Mo G.; Tian X.; Yu X. Y.; Ackermann L. Org. Lett. 2019, 21, 1237.
[11]
(a) Chen X.; Jiang J.; Huang X.-J.; He W.-M. Org. Chem. Front. 2023, 10, 3839.
[11]
(b) Natarajan P.; Chuskit D.; Priya; Manjeet New J. Chem. 2022, 46, 322.
文章导航

/