综述与进展

N-碘代丁二酰亚胺(NIS)参与的碘化反应最新研究进展

  • 曹同阳 ,
  • 李玮 ,
  • 王力竞
展开
  • a 河北大学化学与材料科学学院 河北保定 071002
    b 药物化学与分子诊断教育部重点实验室 河北省化学生物学重点实验室 河北保定 071002

收稿日期: 2023-06-28

  修回日期: 2023-09-18

  网络出版日期: 2023-10-12

基金资助

国家自然科学基金(21702043); 河北省自然科学基金(B2021201035)

Recent Progress in N-Iodosuccinimide (NIS)-Mediated Iodination Reactions

  • Tongyang Cao ,
  • Wei Li ,
  • Lijing Wang
Expand
  • a College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002
    b Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Baoding, Hebei 071002
* Corresponding authors. E-mail: ;

Received date: 2023-06-28

  Revised date: 2023-09-18

  Online published: 2023-10-12

Supported by

National Natural Science Foundation of China(21702043); Hebei Provincial Natural Science Foundation(B2021201035)

摘要

有机碘化合物是一类非常重要的功能性分子, 其合成研究具有重要意义. 鉴于N-碘代丁二酰亚胺(NIS)具有反应活性高、廉价易得和环境友好等优点, 一直以来都是碘化反应的优选碘试剂. 近年来利用NIS参与的碘化反应制备有机碘化合物有了重要新进展, 引起了极大地关注. 综述了这一领域的最新研究进展, 主要包括NIS与芳烃/末端炔烃的C—H碘化反应、NIS与不饱和化合物和亲核试剂的碘化双官能团化反应, 以及NIS与不饱和化合物的串联碘环化反应.

本文引用格式

曹同阳 , 李玮 , 王力竞 . N-碘代丁二酰亚胺(NIS)参与的碘化反应最新研究进展[J]. 有机化学, 2024 , 44(2) : 508 -524 . DOI: 10.6023/cjoc202306026

Abstract

Organoiodine compounds belong to a very important class of functional molecules and their synthesis research is of great significance. Given the advantages of N-iodosuccinimide (NIS) with high reactivity, cheap and easy to get and environmental friendliness, it has always been the preferred iodine reagent for iodization, and in recent years, the preparation of organic iodine compounds by iodization reaction with NIS has made great progress, which has received considerable interest. To this end, the research progress is summarized, including the C—H iodization of NIS and aromatics/terminal alkynes, iodine difunctionalization between NIS and unsaturated compounds with nucleophiles, and cascade iodocyclization between NIS and unsaturated compounds.

参考文献

[1]
(a) Wang, L.; Zhou, X.; Fredimoses, M.; Liao, S.; Liu, Y. RSC Adv. 2014, 4, 57350.
[1]
(b) Gribble G. W. Mar. Drug. 2015, 13, 4044.
[2]
Vekariya, R. H.; Balar, C. R.; Sharma, V. S.; Prajapati, N. P.; Vekariya, M. K.; Sharma, A. S. ChemistrySelec. 2018, 3, 9189.
[3]
(a) Frontier, A.; Leboeuf, D.; Ciesielski, J. Synlet. 2013, 25, 399.
[3]
(b) Kambe, N.; Iwasaki, T.; Terao, J. Chem. Soc. Rev. 2011, 40, 4937.
[4]
Racys, D. T.; Warrilow, C. E.; Pimlott, S. L.; Sutherland, A. Org. Lett. 2015, 17, 4782.
[5]
Gohier, F.; Grolleau, J.; Frère, P. Synthesi. 2015, 47, 3901.
[6]
Xiong, H. X.; Yao, M.; Zhang, J. J.; Yang, S.; Liu, E. Synlet. 2020, 31, 1102.
[7]
Gu, S.-X.; Qiao, H.; Sun, K.; Duan, T.; Ju, X.-L. Chem. Reag. 2014, 36, 988 (in Chinese).
[7]
(古双喜, 乔恒, 孙克, 段婷, 巨修练, 化学试剂. 2014, 36, 988.)
[8]
Cant, A. A.; Champion, S.; Bhalla, R.; Pimlott, S. L.; Sutherland, A. Angew. Chem.. Int. Ed. 2013, 52, 7829.
[9]
Yang, H.; Li, Y.; Jiang, M.; Wang, J.; Fu, H. Chem. Eur. J. 011, 17, 5652.
[10]
Filimonov, V. D.; Trusova, M.; Postnikov, P.; Krasnokutskaya, E. A.; Lee, Y. M.; Hwang, H. Y.; Kim, H.; Chi, K. W. Org. Lett. 2008, 10, 3186.
[11]
Prakash, G. K. S.; Mathew, T.; Dushyanthi, H.; Esteves, P. M.; Wang, Q.; Rasul, G.; Olah, G. A. J. Am. Chem. Soc. 2004, 126, 15770.
[12]
Zhou, C. Y.; Li, J.; Peddibhotla, S.; Romo, D. Org. Lett. 2010, 12, 2107.
[13]
Frontier, A.; Leboeuf, D.; Ciesielski, J. Synlet. 2013, 25, 399.
[14]
Racys, D. T.; Sharif, S. A.; Pimlott, S. L.; Sutherland, A. J. Org. Chem. 2016, 81, 772.
[15]
Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Org. Lett. 2006, 8, 2523.
[16]
(a) Schroder, N.; Wencel-Delord, J.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 8298.
[16]
(b) Wang, L.; Ackermann, L. Chem. Commun. 2014, 50, 1083.
[16]
(c) Qiu, F.-C.; Yang, W.-C.; Chang, Y.-Z.; Guan, B.-T. Asian J. Org. Chem. 2017, 6, 1361.
[17]
Gupta, S.; Melanson, J. A.; Vaillancourt, L.; Nugent, W. A.; Tanoury, G. J.; Schatte, G.; Snieckus, V. Org. Lett. 2018, 20, 3745.
[18]
Ma, X.-T.; Tian, S.-K. Adv. Synth. Catal. 2013, 355, 337.
[19]
Wu, J. J.; He, D. Z.; Zhang, L.; Liu, Y. D.; Mo, X. G.; Lin, J. B.; Zhang, H. J. Org. Lett. 2017, 19, 5438.
[20]
Erbing, E.; Sanz-Marco, A.; Vázquez-Romero, A.; Malmberg, J.; Johansson, M. J.; Gómez-Bengoa, E.; Martín-Matute, B. ACS Catal. 2018, 8, 920.
[21]
Zheng, D. S.; Zhang, W. W.; Gu, Q.; You, S. L. ACS Catal. 2023, 13, 5127.
[22]
Huestis M. P. J. Org. Chem. 2016, 81, 12545.
[23]
Wang, Z. Y.; Guo, R. L.; Zhang, X. L.; Wang, M. Y.; Chen, G. N.; Wang, Y. Q. Org. Chem. Front. 2021, 8, 1844.
[24]
Yang, C.-Y.; Hu, L.-P.; Zhang, D.-R.; Li, X.; Teng, M.-Y.; Liu, B.; Huang, G.-L. New J. Chem. 2022, 46, 10934.
[25]
(a) Zeng, X. J.; Liu, S. W.; Shi, Z. Y.; Xu, B. Org. Lett. 2016, 18, 4770.
[25]
(b) Mader, S.; Molinari, L.; Rudolph, M.; Rominger, F.; Hashmi, A. S. Chem.-Eur. J. 2015, 21, 3910.
[26]
(a) Naskar, D.; Roy, S. J. Org. Chem. 1999, 64, 6896.
[26]
(b) Das, J. P.; Roy, S. J. Org. Chem. 2002, 67, 7861.
[26]
(c) Starkov, P.; Rota, F.; D'Oyley, J. M.; Sheppard, T. D. Adv. Synth. Catal. 2012, 354, 3217.
[27]
Shi, W.; Guan, Z.; Cai, P.; Chen, H. J. Catal. 2017, 353, 199.
[28]
Li, M.; Li, Y.; Zhao, B.; Liang, F.; Jin, L.-Y. RSC Adv. 2014, 4, 30046.
[29]
Yao, M.; Zhang, J. J.; Yang, S.; Xiong, H. X.; Li, L.; Liu, E.; Shi, H. RSC Adv. 2020, 10, 3946.
[30]
Berini, C.; Lavergne, A.; Molinier, V.; Capet, F.; Deniau, E.; Aubry, J.-M. Eur. J. Org. Chem. 2013, 2013, 1937.
[31]
Zhang, Z.; Chang, L.; Wang, S.; Wang, H.; Yao, Z.-J. RSC Adv. 2013, 3, 18446.
[32]
Zhu, L. L.; Xu, X. Q.; Shi, J. W.; Chen, B. L.; Chen, Z. L. J. Org. Chem. 2016, 81, 3568.
[33]
Sun, K.; Luan, B. X.; Liu, Z. H.; Zhu, J. L.; Du, J. K.; Bai, E. Q.; Fang, Y.; Zhang, B. Org. Biomol. Chem. 2019, 17, 4208.
[34]
Li, H.-H.; Li, X.-X.; Zhao, Z.-G.; Lin, C.-B.; Ma, T.; Sun, C.-Y.; Yang, B.-W.; Fu, X.-L. Tetrahedron Lett. 2016, 57, 4640.
[35]
Re He Man, X. J. A. T.; Liu, Y. C.; Li, X. X.; Zhao, Z. G. New J. Chem. 2019, 43, 14739.
[36]
Tan, Y.; Jia, S.; Hu, F.; Liu, Y.; Peng, L.; Li, D.; Yan, H. J. Am. Chem. Soc. 2018, 140, 16893.
[37]
Wang, Q. L.; Zheng, N. Org. Lett. 2019, 21, 9999.
[38]
Xiong, B.; Xu, S.; Zhu, Y.; Yao, L.; Zhou, C.; Liu, Y.; Tang, K. W.; Wong, W. Y. Chem.-Eur. J. 2020, 26, 9556.
[39]
Chu, D.; Ellman, J. A. Org. Lett. 2022, 24, 2921.
[40]
Faizi, S.; Farooqi, F.; Zikr-Ur-Rehman, S.; Naz, A.; Noor, F.; Ansari, F.; Ahmad, A.; Khan, S. A. Tetrahedro. 2009, 65, 998.
[41]
Crone, B.; Kirsch, S. F. Org. Lett. 2007, 72, 5435.
[42]
(a) Jiang, X. P.; Fu, C. L.; Ma, S. M. Chem.-Eur. J. 2008, 14, 9656.
[42]
(b) Lu, B.; Jiang, X. P.; Fu, C. L.; Ma, S. M. J. Org. Chem. 2009, 74, 438.
[43]
Pradal, A.; Nasr, A.; Toullec, P. Y.; Michelet, V. Org. Lett. 2010, 12, 5222.
[44]
(a) Jurberg, L. D.; Gagosz, F.; Zard, S. Z. Org. Lett. 2010, 12, 416.
[44]
(b) Zhu, Y. X.; Yin, G. W.; Hong, D.; Lu P.; Wang, Y. G. Org. Lett. 2011, 13, 1024.
[44]
(c) Fujioka, H.; Maehata, R.; Wakamatsu, S.; Nakahara, K.; Hayashi, T.; Oki, T. Org. Lett. 2012, 14, 1054.
[44]
(d) Zhang, L.; Zhu, Y.; Yin, G.; Lu, P.; Wang, Y. J. Org. Chem. 2012, 77, 9510.
[44]
(e) Raffa, G.; Balme, G.; Monteiro, N. Eur. J. Org. Chem. 2013, 2013, 105.
[45]
Huber, F.; Kirsch, S. F. J. Org. Chem. 2013, 78, 2780.
[46]
Shen, Z.; Pan, X.; Lai, Y.; Hu, J.; Wan, X.; Li, X.; Zhang, H.; Xie, W. Chem. Sci. 2015, 6, 6986.
[47]
Li, Y.-L.; Li, J.; Yu, S.-N.; Wang, J.-B.; Yu, Y.-M.; Deng, J. Tetrahedro. 2015, 71, 8271.
[48]
Sasaki, T.; Miyagi, K.; Moriyama, K.; Togo, H. Org. Lett. 2016, 18, 944.
[49]
Sasaki, T.; Moriyama, K.; Togo, H. J. Org. Chem. 2017, 82, 11727.
[50]
Wu, Y. M.; Zhang, J. M.; Guo, Y. W.; Wang, X. J.; Zhu, Z. T. Synlet. 2016, 27, 2259.
[51]
Song, Y.; Wang, L. C.; Du, S.; Chen, Z.; Wu, X. F. Org. Biomol. Chem. 2021, 19, 6115.
[52]
Fedoseev, P.; Coppola, G.; Ojeda, G. M.; Van der Eycken, E. V. Chem. Commun. 2018, 54, 3625.
[53]
Kondoh, A.; Aita, K.; Ishikawa, S.; Terada, M. Org. Lett. 2020, 22, 2105.
[54]
Velasco, N.; Martínez‐Nú?ez, C.; Fernández‐Rodríguez, M. A.; Sanz, R.; Suárez‐Pantiga, S. Adv. Synth. Catal. 2022, 364, 2932.
[55]
Cao, T. Y.; Qi, L.; Dong, W.; Yan, Z. M.; Ji, S. C.; Du, J. L.; Zhang, L.; Li, W.; Wang, L. J. J. Org. Chem. 2022, 87, 16578.
[56]
Cao, T. Y.; Qi, L.; Wang, L. J. J. Org. Chem. 2023, 88, 3035.
[57]
Liu, T.; Mei, T. S.; Yu, J. Q. J. Am. Chem. Soc. 2015, 137, 5871.
[58]
Wang, A. F.; Zhu, Y. L.; Wang, S. L.; Hao, W. J.; Li, G.; Tu, S. J.; Jiang, B. J. Org. Chem. 2016, 81, 1099.
[59]
Ni, S. Y.; Cao, J.; Mei, H. B.; Han, J. L.; Li, S. H.; Pan, Y. Green Chem. 2016, 18, 3935.
[60]
Li, X.; Ding, Y.; Qian, L.; Gao, Y.; Wang, X.; Yan, X.; Xu, X. J. Org. Chem. 2019, 84, 12656.
[61]
Zou, L.; Wang, L.; Sun, L.; Xie, X. F.; Li, P. H. Chem. Commun. 2020, 56, 7933.
[62]
Yang, M.; Hua, J. W.; Wang, H.; Ma, T.; Liu, C. K.; He, W.; Zhu, N.; Hu, Y. J.; Fang, Z.; Guo, K. J. Org. Chem. 2022, 87, 8445.
[63]
Ariyarathna, J. P.; Baskaran, P.; Chhikara, A.; Kaur, N.; Nguyen, A. M.; Premathilaka, S. M.; Huynh, M. M.; Truong, J. T.; Li, W. Chem. Commun. 2023, 59, 6418.
文章导航

/