研究论文

无光催化剂条件下可见光诱导炔基碘和亚磺酸钠偶联反应

  • 陈雯雯 ,
  • 张琴 ,
  • 张松月 ,
  • 黄芳芳 ,
  • 张馨尹 ,
  • 贾建峰
展开
  • 山西师范大学化学与材料科学学院 磁性分子与磁信息材料教育部重点实验室 山西太原 030031
作者对文章贡献一致

收稿日期: 2023-06-26

  修回日期: 2023-09-20

  网络出版日期: 2023-10-26

基金资助

山西省自然科学基金(202203021221134); 山西省研究生教育教学改革课题(2022YJJG136)

Visible Light Promoted Coupling Reaction of Alkynyl Iodide and Sodium Sulphinate without Photocatalyst

  • Wenwen Chen ,
  • Qin Zhang ,
  • Songyue Zhang ,
  • Fangfang Huang ,
  • Xinyin Zhang ,
  • Jianfeng Jia
Expand
  • Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031
The authors contributed equally to this work.
* Corresponding authors. E-mail: ;

Received date: 2023-06-26

  Revised date: 2023-09-20

  Online published: 2023-10-26

Supported by

Natural Science Foundation of Shanxi Province(202203021221134); Postgraduate Education Teaching Reform Topic of Shanxi Province(2022YJJG136)

摘要

报道了一种由可见光促进的炔碘与亚磺酸钠直接交叉偶联构建炔砜的方法. 合成方法简便、绿色, 不需要任何光催化剂和添加剂, 具有良好的官能团耐受性和底物普遍适应性. 此外, 放大规模实验也能取得良好的收率, 进一步证明了该方法的实际应用价值.

本文引用格式

陈雯雯 , 张琴 , 张松月 , 黄芳芳 , 张馨尹 , 贾建峰 . 无光催化剂条件下可见光诱导炔基碘和亚磺酸钠偶联反应[J]. 有机化学, 2024 , 44(2) : 584 -592 . DOI: 10.6023/cjoc202306023

Abstract

The cross-coupling reaction between alkynyl iodide and sodium sulphinate catalyzed by visible light, leading to the construction of acetylene sulfone, is reported. The synthesis method is simple and green, and does not require any photo- catalyst and additive. The reaction has high efficiency and good functional group compatibility. In addition, the scale-up experiment can also obtain good yield, which further proves the practical application value of the reaction.

参考文献

[1]
Feng, M. H.; Tang, B. Q.; Liang, S. H.; Jiang, X. F. Curr. Top. Med. Chem. 2016, 16, 1200.
[2]
Balaburski, G. M.; Leu, J. I.-J.; Beeharry, N.; Hayik, S.; Andrake, M. D.; Zhang, G.; Herlyn, M.; Villanueva, J.; Dunbrack Jr, R. L.; Yen, T.; George, D. L.; Murphy, M. E. Mol. Cancer Res. 2013, 11, 219.
[3]
Selling, H. A.; Tempe, A. Pestic. Sci. 1976, 7, 19.
[4]
(a) Huang, X.; Duan, D.; Zheng, W. ChemInfor. 2003, 34, 1958.
[4]
(b) Xie, M.; Wang, J.; Gu, X.; Sun, Y.; Wang, S. Org. Lett. 2006, 8, 431.
[5]
(a) Xiao, Q.; Lu, M.; Deng, Y.; Jian, J.-X.; Tong, Q.-X.; Zhong, J.-J. Org. Lett. 2021, 23, 9303.
[5]
(b) Jia, J.; Ho, Y. A.; Bulow, R. F. Chemistr. 2018, 24, 14054.
[5]
(c) Song, W.; Zheng, N.; Li, M.; Dong, K.; Li, J.; Ullah, K.; Zheng, Y. Org. Lett. 2018, 20, 6705.
[5]
(d) Wang, S.; Liu, C.; Jia, J.; Zha, C.; Xie, M.; Zhang, N. Tetrahedro. 2016, 72, 6684.
[5]
(e) Zhou, X.; Yu, S.; Qi, Z.; Li, X. Sci. China Chem. 2015, 58, 1297.
[6]
(a) Fang, K.; Xie, M.; Zhang, Z.; Ning, P.; Shu, G. Tetrahedron Lett. 2013, 54, 3819.
[6]
(b) Guo, A.; Han, J. B.; Zhu, L.; Wei, Y. ; Org. Lett. 2019, 21, 2927.
[6]
(c) Jin, W.; Wu, M.; Xiong, Z.; Zhu, G. Chem. Commun. 2018, 54, 7924.
[7]
(a) Truce, W. E.; Hill, H. E.; Boudakia, M. M. J. Am. Chem. Soc. 1956, 78, 2760.
[7]
(b) Laba, V. I.; Polievktov, M. K.; Prilezhaeva, E. N.; Mairanovskii, S. G. Bull. Acad. Sci. USSR. Div. Chem. Sci. 1969, 18, 2004.
[7]
(c) Corlay, H.; Lewis, R. T.; Motherwell, W. B.; Shipman, M. Tetrahedro. 1995, 51, 3303.
[7]
(d) Zaburdaeva, E. A.; Dodonov, V. A. Russ. Chem. Bull. 2011, 185.
[8]
(a) Truce, W. E.; Wolf, G. C. J. Org. Chem. 1971, 36, 1727.
[8]
(b) Lee, J. W.; Kim, T. H.; Oh, D. Y. Synth. Commun. 1989, 19, 2633.
[8]
(c) Nair, V.; Augustine, A.; Suja, T. D. Synthesi. 2002, 2259.
[8]
(d) Qi, D.; Dong, W.; Peng, Z.; Zhang, Y.; An, D. Tetrahedro. 2019, 75, 130427.
[9]
(a) Miura, T.; Kobayashi, M. J. Chem. Soc.. Chem. Commun. 1982, 438.
[9]
(b) Bhaskar, R. D.; Chandrasekhar, B. N.; Padmavathi, V.; Padmaja, A. Tetrahedro. 1997, 53, 17351.
[9]
(c) Qian, H.; Huang, X. Tetrahedron Lett. 2002, 43, 1059.
[10]
Suzuki, H.; Abe, H. Tetrahedron Lett. 1996, 37, 3717.
[11]
(a) Liu, Z. D.; Chen, Z. C. Synth. Commun. 1992, 22, 1997.
[11]
(b) Huang, X.; Zhu, Q. Tetrahedron Lett. 2001, 42, 6373.
[11]
(c) Wei, W.; Wen, J.; Yang, D.; Jing, H.; You, J.; Wang, H. RSC Adv. 2015, 5, 4416.
[11]
(d) Raghuvanshi, D. S.; Verma, N. Org. Biomol. Chem. 2021, 19, 4760.
[11]
(e) Meesin, J.; Katrun, P.; Pareseecharoen, C.; Pohmakotr, M.; Reutrakul, V.; Soorukram, D.; Kuhakarn, C. J. Org. Chem. 2016, 81, 2744.
[11]
(f) Dai, C.; Wang, J.; Deng, S.; Zhou, C.; Zhang, W.; Zhu, Q.; Tang, X. RSC Adv. 2017, 7, 36112.
[11]
(g) Wang, L.; Wei, W.; Yang, D.; Cui, H.; Yue, H.; Wang, H. Tetrahedron Lett. 2017, 58, 4799.
[11]
(h) Mo, Z. Y.; Zhang, Y. Z.; Huang, G. B.; Wang, X. Y.; Pan, Y. M.; Tang, H. T. Adv. Synth. Catal. 2020, 362, 2160.
[11]
(i) Meng, X.; Xu, H.; Cao, X.; Cai, X. M.; Luo, J.; Wang, F.; Huang, S. Org. Lett. 2020, 22, 6827.
[11]
(j) Gong, X.; Yang, M.; Liu, J. B.; He, F. S.; Wu, J. Org. Chem. Fron. 2020, 7, 938.
[12]
(a) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Acc. Chem. Res. 2016, 49, 1911.
[12]
(b) Zhou, Q. Q.; Zou, Y. Q.; Lu, L. Q.; Xiao, W. J. Angew. Chem.. Int. Ed. 2019, 58, 1586.
[13]
Wang, X.; Li, X.; Tian, B.; Xiao, H.; Chen, W.; Wu, H.; Jia, J. Arabian J. Chem. 2022, 15, 103708.
[14]
(a) Zhang, L.; Wei, C.; Wu, J.; Liu, D.; Yao, Y.; Chen Z.; Liu, J, ; Yao, C.-J.; Li, D.; Yang, R.; Xia, Z. Chem. Sci. 2022, 13, 7475.
[14]
(b) Amos, S. G. E.; Cavalli, D.; Vaillant, F. L.; Waser, J. Angew. Chem.. Int. Ed. 2021, 60, 23827.
[15]
(a) Fang, Z; Zhang, Y.; Zhang, Z.; Song, Q.; Wu, Y.; Liu, Z.; Ning, Y. Org. Lett. 2022, 6374.
[15]
(b) Aleti, R. R.; Festa, A. A.; Storozhenko, O. A.; Bondarev, V. L.; Segida, O. O.; Paveliev, S. A.; Rybakov, V. B.; Varlamov, A. V.; Voskressensky, L. G. Org. Lett. 2022, 24, 9337.
[15]
(c) Wang, Y.; Tang, K.; Liu, Z.; Ning, Y. Chem. Commun. 2020, 56, 13141.
[16]
Chen, P.; Zhu, C.; Zhu, R.; Wu, W.; Jiang, H. Chem. Asian J. 2017, 12, 1875.
文章导航

/