氮杂环卡宾催化的五氟苯基硫醚的合成
收稿日期: 2023-06-18
修回日期: 2023-09-12
网络出版日期: 2023-10-26
基金资助
国家自然科学基金(21662029); 石河子大学国际合作(GJHZ202204)
N-Heterocyclic Carbene-Catalyzed Synthesis of Pentafluorophenyl Sulfides
Received date: 2023-06-18
Revised date: 2023-09-12
Online published: 2023-10-26
Supported by
National Natural Science Foundation of China(21662029); International Cooperation Project of Shihezi University(GJHZ201801)
夏登鹏 , 罗锦昀 , 何林 , 蔡志华 , 杜广芬 . 氮杂环卡宾催化的五氟苯基硫醚的合成[J]. 有机化学, 2024 , 44(2) : 622 -630 . DOI: 10.6023/cjoc202306014
An efficient method for the construction of C(sp2)—S bond has been developed. The stable N-heterocyclic carbene 1,3-bis(2,6-dissopropylphenyl)-imidazole-2-ylidene can activate the C—Si bond of pentafluorophenyl trimethylsilicon effectively to initiate the nucleophilic substitution reaction with thiosulfonic ester, producing pentafluorophenyl sulfide products in 34%~98% yields.
Key words: N-heterocyclic carbene; C—S bond; pentafluorophenyl sulfide
| [1] | Fraústo DaSilva, J. R.; Williams, R. J. P. The Biological Chemistry of the Elements. Oxford University Press, New York, 2001. |
| [2] | (a) Kondo, T.; Mitsudo, T. A. Chem. Rev. 2000, 100, 3205. |
| [2] | (b) Sibiand, M.; Manyem, S. Tetrahedro. 2000, 56, 8033. |
| [2] | (c) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807. |
| [2] | (d) Sun, J.-W.; Fu, G.-C. J. Am. Chem. Soc. 2010, 132, 4568. |
| [2] | (e) Takanori, O.; Naoya, K.; Masakatsu, S. Angew. Chem.. Int. Ed. 2012, 51, 8551. |
| [2] | (f) Roggen, M.; Carreira, E. M. Angew. Chem.. Int. Ed. 2012, 51, 8652. |
| [2] | (g) Xia, Y.; Lin, L.; Chang, F.; Fu, X.; Liu, X.; Feng, X. Angew. Chem.. Int. Ed. 2015, 54, 13748. |
| [2] | (h) Denmark, S. E.; Chi, H.-M. J. Am. Chem. Soc. 2014, 136, 3655. |
| [2] | (i) Denmark, S. E.; Hartmann, E.; Kornfilt, D. J. P.; Wang, H. Nat. Chem. 2014, 6, 1056. |
| [2] | (j) Kaiser, D.; Klose, I.; Oost, R.; Neuhaus, J.; Maulide, N. Chem. Rev. 2019, 119, 8701. |
| [2] | (k) Otsuka, S.; Nogi, K.; Yorimitsu, H. Top Curr. Chem. 2018, 376, 13. |
| [2] | (l) Fan, R.; Tan, C.; Liu, Y.-G.; Wei, Y.; Zhao, X.-W.; Liu, X.-Y.; Tan, J.-J.; Yoshida, H. Chin. Chem. Lett. 2021, 32, 299. |
| [2] | (m) Zhang, S.-B.; Liu, X.; Gao, M.-Y.; Dong, Z.-B. J. Org. Chem. 2018, 83, 14933. |
| [2] | (n) Liu, X.; Zhang, S.-B.; Zhu, H.; Dong, Z.-B. J. Org. Chem. 2018, 83, 11703. |
| [2] | (o) Liu, X.; Liu, M.; Xu, W.; Zeng, M.-T.; Zhu, H.; Chang, C.-Z.; Dong, Z.-B. Green Chem. 2017, 19, 5591. |
| [2] | (p) Liu, X.; Cao, Q.; Xu, W.; Zeng, M.-T.; Dong, Z.-B. Eur. J. Org. Chem. 2017, 5795. |
| [2] | (q) Hu, C.-Y.; Chen, F.-M.; Lu, G.-P.; Yi, Y.-B. Chin. Chem. Lett. 2022, 33, 4293. |
| [2] | (r) Jiang, L.-Q.; Qian, J.-L.; Yi, W.-B.; Lu, G.-P.; Cai, C.; Zhang, W. Angew. Chem.. Int. Ed. 2015, 54, 14965. |
| [2] | (s) Tang, S.-Y.; Liu, Y.; Li, L.-J.; Ren, X.-H.; Li, J.; Yang, G.-Y.; Li, H.; Yuan, B.-X. Org. Biomol. Chem. 2019, 17, 1370. |
| [2] | (t) Briggs, E. L.; Tota, A.; Colella, M.; Degennaro, L.; Luisi, R.; Bull, J. A. Angew. Chem.. Int. Ed. 2019, 58, 14303. |
| [3] | (a) Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew. Chem.. Int. Ed. 2003, 42, 1210. |
| [3] | (b) Zahn, A.; Brotschi, C.; Leumann, C. J. Chem.-Eur. J. 2005, 11, 2125. |
| [3] | (c) Müller, K.; Faeh, C.; Diederich, F. Scienc. 2007, 317, 1881. |
| [4] | (a) Matsugi, M.; Murata, K.; Nambu, H.; Kita, Y. Tetrahedron Lett. 2001, 42, 1077. |
| [4] | (b) Matsugi, M.; Murata, K.; Gotanda, K.; Nambu, H.; Anilkumar, G.; Matsumoto, K.; Kita, Y. J. Org. Chem. 2001, 66, 2434. |
| [5] | Yu, C.; Zhang, C.; Shi, X. Eur. J. Org. Chem. 2012, 1953. |
| [6] | Xu, X.-B.; Liu, J.; Zhang, J.-J.; Wang, Y.-W.; Peng, Y. Org. Lett. 2013, 15, 550. |
| [7] | Nishino, K.; Tsukahara, S.; Ogiwara, Y.; Sakai, N. Eur. J. Org. Chem. 2019, 1588. |
| [8] | (a) Saidalimu, I.; Suzuki, S.; Wang, J.; Tokunaga, E.; Shibata, N. Org. Lett. 2017, 19, 1012. |
| [8] | (b) Saidalimu, I.; Yoshioka, T.; Liang, Y.; Tokunaga, E.; Shibata, N. Chem. Commun. 2018, 54, 8761. |
| [9] | Luo, J.-Y.; Lin, M.-Z.; Wu, L.-F.; Cai, Z.-H.; He, L.; Du, G.-F. Org. Biomol. Chem. 2021, 19, 9237. |
| [10] | (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606. |
| [10] | (b) Biju, A. I.; Kuhl, N.; Glorius, F. Acc. Chem. Res. 2011, 44, 1182. |
| [10] | (c) Mabatthananchai, J.; Bode, J. W. Chem. Sci. 2012, 3, 192. |
| [10] | (d) Grossmann, A.; Enders, D. Angew. Chem.. Int. Ed. 2012, 51, 314. |
| [10] | (e) lzquierdo, J.; Hutson, G. E.; Cohen, D. T.; Scheidt, K. A. Angew. Chem.. Int. Ed. 2012, 51, 11686. |
| [10] | (f) Hopkinson, N.; Richter, C.; Schedler, M.; Glorius, F. Natur. 2014, 510, 485. |
| [10] | (g) Menon, R. S.; Biju, A. I.; Nair, V. Chem. Soc. Rev. 2015, 44, 5040. |
| [10] | (h) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, L. Chem. Rev. 2015, 115, 9307. |
| [10] | (i) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906. |
| [10] | (j) Wang, Q.-T.; Meng, W.; Feng, X.-Q.; Du, H.-F. Chin. J. Chem. 2021, 39, 918. |
| [10] | (k) Cui, Z.-Z.; Wang, B.-N.; Li, J.-X.; Pang, R.-L.; Kang, Y.-R.; Xiao, X.-Q. Chin. J. Chem. 2021, 39, 2410. |
| [10] | (l) Li, S.-Z.; Ouyang, Z.-W.; Zou, J.-J.; Wang, D.-Y.; Xu, B.; Deng, L. Acta Chim. Sinic. 2022, 80, 272 (in Chinese). |
| [10] | (李尚钊, 欧阳振武, 邹俊杰, 王东阳, 许斌, 邓亮, 化学学报. 2022, 80, 272.) |
| [11] | (a) Grasa, G. A.; Kissling, R. M.; Nolan, S. P. Org. Lett. 2002, 4, 3583. |
| [11] | (b) Singh, R.; Kissling, R. M.; Letellier, M. A.; Nolan, S. P. J. Org. Chem. 2004, 69, 209. |
| [11] | (c) Grasa, G. A.; Giveli, I.; Singh, R.; Nolan, S. P. J. Org. Chem. 2003, 68, 2812. |
| [11] | (d) Kano, I.; Sasaki, K.; Maruoka, K. Org. Lett. 2005, 7, 1347. |
| [11] | (e) Nyce, G. W.; Lamboy, J. A.; Connolr, E. F.; Waymouth, R. M.; Hedrick, J. L. Org. Lett. 2002, 4, 3587. |
| [11] | (f) Zeng, I.-Q.; Song, G.-H.; Li, C.-J. Chem. Commun. 2009, 41, 6249. |
| [11] | (g) Movassaghi, M.; Schmidt, M. A. Org. Lett. 2005, 7, 2453. |
| [11] | (h) Guo, H.; Wang Y., Du, G.-F.; Dai, B.; He, L. Tetrahedro. 2015, 71, 3472. |
| [12] | (a) José Aurell, M.; Domingo, L. R.; Arnó, M.; Zaragozá, R. J. Org. Biomol. Chem. 2016, 14, 8338. |
| [12] | (b) Luo, C.; Xu, X.-Y.; Xu, J.-F.; Chen, X.-K. Org. Biomol. Chem. 2022, 20, 9298. |
| [12] | (c) Shi, Q.-Q.; Wang, Y.; Wang, Y.-Y.; Qu, L.-B.; Qiao, Y.; Wei, D.-H. Org. Chem. Front. 2018, 5, 2739. |
| [12] | (d) Mukherjee, S.; Joseph, S.; Bhunia, A.; Gonnade, R. G.; Yetra, S. R.; Biju, A. T. Org. Biomol. Chem. 2017, 15, 2013. |
| [12] | (e) Patra, A.; James, A.; Das, T. K.; Biju, A. T. J. Org. Chem. 2018, 83, 14820. |
| [12] | (f) Lyngvi, E.; Bode, J. W.; Schoenebeck, F. Chem. Sci. 2012, 3, 2346. |
| [12] | (g) Wu, L.-L.; Yu, B.; Li, E.-Q. Adv. Synth. Catal. 2020, 362, 4010. |
| [12] | (h) Balanna, K.; Madica, K.; Mukherjee, S.; Ghosh, A.; Poisson, T.; Besset, T.; Jindal, G.; Biju, A. T. Chem.-Eur. J. 2020, 26, 818. |
| [12] | (i) Meng, D.; Xie, Y.-X; Peng, Q.-P.; Wang, J. Org. Lett. 2020, 22, 7635. |
| [12] | (j) Yong, X.-F.; Ng, E.-W.-H.; Zhen, Z.; Lin, X.-L.; Gao, W.-W.; Ho, C.-Y. Adv. Synth. Catal. 2020, 362, 4164. |
| [12] | (k) Li, Y.; Zhang, Z. Q. RSC Adv. 2019, 9, 7635. |
| [12] | (l) Song, X.; Chen, Y.-X.; Lu, F.-F.; Zhang, K.; Yu, C.-X.; Li, T.-J.; Yao, C.-S. Org. Biomol. Chem. 2022, 20, 1219. |
| [12] | (m) Qiu, Y.; Liang, Z.-Q.; Chen, K.-Q; Dai, L.; Ye, S. Org. Chem. Front. 2023, 10, 799. |
| [12] | (n) Zhang, C.-L.; Wang, H.-Y.; Huang, Y.; Wang, X.-H.; Ye, S. Org. Lett. 2022, 24, 7747. |
| [12] | (o) Zhang, Z.-F.; Gao, Z.-H.; Zhang, C.-L.; Ye, S. Tetrahedro. 2021, 94, 132337. |
| [12] | (p) Xia, Z.-H.; Dai, L.; Gao, Z.-H.; Ye, S. Chem. Commun. 2020, 56, 1525. |
| [12] | (q) Han, Y.-F.; Gao, Z.-H.; Zhang, C.-L.; Ye, S. Org. Lett. 2020, 22, 8396. |
| [13] | (a) Qiu, Y.; Dai, L.; Gao, Z.-H.; Ye, S. Org. Biomol. Chem. 2023, 2023, 21, 4750. |
| [13] | (b) Dai, L.; Ye, S. Org. Lett. 2020, 22, 986. |
| [14] | (a) Chen, K.-Q.; Sheng, H.; Liu, Q.; Shao, P.-L.; Chen, X.-Y. Sci. China: Chem. 2021, 64, 7. |
| [14] | (b) Liu, K.; Schwenzer, M.; Studer, A. ACS Catal. 2022, 12, 11984. |
| [14] | (c) Dai, L.; Ye, S. Chin. Chem. Lett. 2021, 32, 660. |
| [14] | (d) Huang, H.; Dai, Q.-S.; Leng, H.-J.; Li, Q.-Z.; Yang, S.-L.; Tao, Y.-M.; Zhang, X.; Qia, T.; Li, J.-L. Chem. Sci. 2022, 13, 2584. |
| [14] | (e) Matsuki, Y.; Ohnishi, N.; Kakeno, Y.; Takemoto, S.; Ishii, T.; Nagao, K.; Ohmiya, H. Nat. Commun. 2021, 12, 3848. |
| [14] | (f) Lv, J.; Jin, Z.-C.; Wang, H.-L.; Chi, Y.-G.-R. ACS Sustainable Chem. Eng. 2022, 10, 42. |
| [14] | (g) Li, Q.-Z.; Zeng, R.; Han, B.; Li, J.-L. Chem.-Eur. J. 2021, 27, 3238. |
| [14] | (h) Ishii, T.; Nagao, K.; Ohmiya, H. Chem. Sci. 2020, 11, 5630. |
| [14] | (i) Wan, D.-H.; Yang, H.-B. Synthesi. 2022, 54, 3307. |
| [14] | (j) Rostovskii, N. V.; Sakharov, P. A.; Novikov, M. S.; Khlebnikov, A. F.; Starova, G. L. Org. Lett. 2015, 17, 4148. |
| [14] | (k) Sheng, H.; Liu, Q.; Zhang, B.-B.; Wang, Z.-X.; Chen, X.-Y. Angew. Chem.. Int. Ed. 2023, e202305088. |
| [14] | (l) Sheng, H.; Liu, Q.; Su, X.-D.; Lu, Y.; Wang, Z.-X.; Chen, X.-Y. Org. Lett. 2020, 22, 7187. |
| [14] | (m) Liua, Q.; Chen, X.-Y. Org. Chem. Front. 2020, 7, 2082. |
| [14] | (n) Xu, Y.-Y.; Dai, L.; Gao, Z.-H.; Ye, S. J. Org. Chem. 2022, 87, 14970. |
| [14] | (o) Dai, L.; Xu, Y.-Y.; Xia, Z.-H.; Ye, S. Org. Lett. 2020, 22, 8173. |
| [14] | (p) Dai, L.; Xia, Z.-H.; Gao, Y.-Y.; Gao, Z.-H.; Ye, S. Angew. Chem.. Int. Ed. 2019, 58, 18124. |
| [14] | (q) Wang, J.-M.; Chen, T.; Yao, C.-S.; Zhang, K. Org. Lett. 2023, 25, 3325. |
| [15] | (a) Fuchter M. J. Chem.-Eur. J. 2010, 16, 12286. |
| [15] | (b) He, L.; Guo, H.; Wang, Y.; Du, G.-F.; Dai, B. Tetrahedron Lett. 2015, 56, 972. |
| [16] | (a) Song, J. J.; Gallou, F.; Reeves, J. T.; Tan, Z.; Yee, N. K.; Senanayake, C. H. J. Org. Chem. 2006, 71, 1273. |
| [16] | (b) Fukuda, Y.; Maeda, Y.; Ishii, S.; Kondo, K.; Aoyama, T. Synthesi. 2006, 589. |
| [16] | (c) Tan, M.; Zhang, Y.; Ying, J. Y. Adv. Synth. Catal. 2009, 351, 1390. |
| [17] | Nguyen, K.; Lupton, D. W. Aust. J. Chem. 2017, 70, 436. |
| [18] | (a) Song, J.-J.; Tan, Z.; Reeves, J. T.; Gallou, F.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2005, 7, 2193. |
| [18] | (b) Reddy, V.P.; Perambuduru, M.; Mehta, J. Top Catal. 2018, 61, 699. |
| [19] | Wu, J.; Sun, X.; Ye, S.; Sun, W. Tetrahedron Lett. 2006, 47, 4813. |
| [20] | (a) Raynaud, J.; Ciolino, A.; Baceiredo, A.; Destarac, M.; Bonnette, F.; Kato, T.; Gnanou, Y.; Taton, D. Angew. Chem.. Int. Ed. 2008, 47, 5390. |
| [20] | (b) Raynaud, J.; Liu, N.; Gnanou, Y.; Taton, D. Macromolecule. 2010, 43, 8853. |
| [20] | (c) Raynaud, J.; Liu, N.; Févre, M.; Gnanou, Y.; Taton, D. Polym. Chem. 2011, 2, 1706. |
| [20] | (d) Lohmeijer, B. G.; Dubois, G.; Leibfarth, F.; Pratt, R. C.; Nederberg, F.; Nelson, A.; Waymouth, R. M.; Wade, C.; Hedrick, J. L. Org. Lett. 2006, 8, 4683. |
| [20] | (e) Brown, H. A.; Chang, Y. A.; Waymouth, R. M. J. Am. Chem. Soc. 2013, 135, 18738. |
| [21] | Du, G.-F.; He, L.; Gu, C. Z.; Dai, B. Synlet. 2010, 16, 2513 |
| [22] | (a) Cai, Z. H.; Du, G. F.; He, L.; Gu, C. Z.; Dai, B. Synthesi. 2011, 2073. |
| [22] | (b) Cai, Z.-H.; Du, G.-F.; Dai, B.; He, L. Synthesi. 2012, 44, 694. |
| [23] | Fan, Y. C.; Du, G. F.; Sun, W. F.; Kang, W.; He, L. Tetrahedron Lett. 2012, 53, 2231. |
| [24] | (a) Zou, X. L.; Du, G.-F.; Sun, W. F.; He, L.; Ma, X. W.; Gu, C. Z.; Dai, B. Tetrahedro. 2013, 69, 607. |
| [24] | (b) Wang, Y.; Xing, F.; Gu, C.-Z.; Li, W.-J.; He, L.; Dai, B.; Du, G.-F. Tetrahedro. 2017, 73, 4501. |
| [25] | Wang, Y.; Du, G.-F.; Xing, F.; Huang, K.-W.; Dai, B.; He, L. Asian J. Org. Chem. 2015, 4, 1362. |
| [26] | Wang, Y.; Du, G.-F.; Gu, C.-Z.; Xing, F.; Dai, B.; He, L. Tetrahedro. 2016, 72, 472. |
| [27] | Du, G.-F.; Xing, F.; Gu, C.-Z.; Dai, B.; He, L. RSC Adv. 2015, 5, 35513. |
| [28] | Schmidt, D.; Berthel, J. H. J.; Pietsch, S.; Radius, U. Angew. Chem.. Int. Ed. 2012, 51, 8881. |
| [29] | Zhao, X.; Liu, T.-X.; Zhang, G. Asian J. Org. Chem. 2017, 6, 677. |
| [30] | Chen, Q.; Huang, Y.; Wang, X.; Wu, J.; Yu, G. Org. Biomol. Chem. 2018, 16, 1713 |
| [31] | Wang, J.; Li, H.-C.; Leng, T.; Liu, M.-C.; Ding, J.-C.; Huang, X.-B.; Wu, H.-Y.; Gao, W.-X.; Wu, G. Org. Biomol. Chem. 2017, 15, 9718. |
/
| 〈 |
|
〉 |