研究论文

氮杂环卡宾催化的五氟苯基硫醚的合成

  • 夏登鹏 ,
  • 罗锦昀 ,
  • 何林 ,
  • 蔡志华 ,
  • 杜广芬
展开
  • 石河子大学化学化工学院 新疆石河子 832000

收稿日期: 2023-06-18

  修回日期: 2023-09-12

  网络出版日期: 2023-10-26

基金资助

国家自然科学基金(21662029); 石河子大学国际合作(GJHZ202204)

N-Heterocyclic Carbene-Catalyzed Synthesis of Pentafluorophenyl Sulfides

  • Dengpeng Xia ,
  • Jinyun Luo ,
  • Lin He ,
  • Zhihua Cai ,
  • Guangfen Du
Expand
  • School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000
* Corresponding authors. ;

Received date: 2023-06-18

  Revised date: 2023-09-12

  Online published: 2023-10-26

Supported by

National Natural Science Foundation of China(21662029); International Cooperation Project of Shihezi University(GJHZ201801)

摘要

利用氮杂环卡宾催化剂的强Lewis碱性, 发展了一种构建C(sp2)—S键的有效方法. 稳定的氮杂环卡宾1,3-双(2,6-二异丙基苯基)咪唑-2-亚基可以对五氟苯基三甲基硅烷的C—Si键进行有效活化, 进而引发与硫代磺酸酯的亲核取代反应, 以34%~98%的产率生成五氟苯基硫醚产物.

本文引用格式

夏登鹏 , 罗锦昀 , 何林 , 蔡志华 , 杜广芬 . 氮杂环卡宾催化的五氟苯基硫醚的合成[J]. 有机化学, 2024 , 44(2) : 622 -630 . DOI: 10.6023/cjoc202306014

Abstract

An efficient method for the construction of C(sp2)—S bond has been developed. The stable N-heterocyclic carbene 1,3-bis(2,6-dissopropylphenyl)-imidazole-2-ylidene can activate the C—Si bond of pentafluorophenyl trimethylsilicon effectively to initiate the nucleophilic substitution reaction with thiosulfonic ester, producing pentafluorophenyl sulfide products in 34%~98% yields.

参考文献

[1]
Fraústo DaSilva, J. R.; Williams, R. J. P. The Biological Chemistry of the Elements. Oxford University Press, New York, 2001.
[2]
(a) Kondo, T.; Mitsudo, T. A. Chem. Rev. 2000, 100, 3205.
[2]
(b) Sibiand, M.; Manyem, S. Tetrahedro. 2000, 56, 8033.
[2]
(c) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807.
[2]
(d) Sun, J.-W.; Fu, G.-C. J. Am. Chem. Soc. 2010, 132, 4568.
[2]
(e) Takanori, O.; Naoya, K.; Masakatsu, S. Angew. Chem.. Int. Ed. 2012, 51, 8551.
[2]
(f) Roggen, M.; Carreira, E. M. Angew. Chem.. Int. Ed. 2012, 51, 8652.
[2]
(g) Xia, Y.; Lin, L.; Chang, F.; Fu, X.; Liu, X.; Feng, X. Angew. Chem.. Int. Ed. 2015, 54, 13748.
[2]
(h) Denmark, S. E.; Chi, H.-M. J. Am. Chem. Soc. 2014, 136, 3655.
[2]
(i) Denmark, S. E.; Hartmann, E.; Kornfilt, D. J. P.; Wang, H. Nat. Chem. 2014, 6, 1056.
[2]
(j) Kaiser, D.; Klose, I.; Oost, R.; Neuhaus, J.; Maulide, N. Chem. Rev. 2019, 119, 8701.
[2]
(k) Otsuka, S.; Nogi, K.; Yorimitsu, H. Top Curr. Chem. 2018, 376, 13.
[2]
(l) Fan, R.; Tan, C.; Liu, Y.-G.; Wei, Y.; Zhao, X.-W.; Liu, X.-Y.; Tan, J.-J.; Yoshida, H. Chin. Chem. Lett. 2021, 32, 299.
[2]
(m) Zhang, S.-B.; Liu, X.; Gao, M.-Y.; Dong, Z.-B. J. Org. Chem. 2018, 83, 14933.
[2]
(n) Liu, X.; Zhang, S.-B.; Zhu, H.; Dong, Z.-B. J. Org. Chem. 2018, 83, 11703.
[2]
(o) Liu, X.; Liu, M.; Xu, W.; Zeng, M.-T.; Zhu, H.; Chang, C.-Z.; Dong, Z.-B. Green Chem. 2017, 19, 5591.
[2]
(p) Liu, X.; Cao, Q.; Xu, W.; Zeng, M.-T.; Dong, Z.-B. Eur. J. Org. Chem. 2017, 5795.
[2]
(q) Hu, C.-Y.; Chen, F.-M.; Lu, G.-P.; Yi, Y.-B. Chin. Chem. Lett. 2022, 33, 4293.
[2]
(r) Jiang, L.-Q.; Qian, J.-L.; Yi, W.-B.; Lu, G.-P.; Cai, C.; Zhang, W. Angew. Chem.. Int. Ed. 2015, 54, 14965.
[2]
(s) Tang, S.-Y.; Liu, Y.; Li, L.-J.; Ren, X.-H.; Li, J.; Yang, G.-Y.; Li, H.; Yuan, B.-X. Org. Biomol. Chem. 2019, 17, 1370.
[2]
(t) Briggs, E. L.; Tota, A.; Colella, M.; Degennaro, L.; Luisi, R.; Bull, J. A. Angew. Chem.. Int. Ed. 2019, 58, 14303.
[3]
(a) Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew. Chem.. Int. Ed. 2003, 42, 1210.
[3]
(b) Zahn, A.; Brotschi, C.; Leumann, C. J. Chem.-Eur. J. 2005, 11, 2125.
[3]
(c) Müller, K.; Faeh, C.; Diederich, F. Scienc. 2007, 317, 1881.
[4]
(a) Matsugi, M.; Murata, K.; Nambu, H.; Kita, Y. Tetrahedron Lett. 2001, 42, 1077.
[4]
(b) Matsugi, M.; Murata, K.; Gotanda, K.; Nambu, H.; Anilkumar, G.; Matsumoto, K.; Kita, Y. J. Org. Chem. 2001, 66, 2434.
[5]
Yu, C.; Zhang, C.; Shi, X. Eur. J. Org. Chem. 2012, 1953.
[6]
Xu, X.-B.; Liu, J.; Zhang, J.-J.; Wang, Y.-W.; Peng, Y. Org. Lett. 2013, 15, 550.
[7]
Nishino, K.; Tsukahara, S.; Ogiwara, Y.; Sakai, N. Eur. J. Org. Chem. 2019, 1588.
[8]
(a) Saidalimu, I.; Suzuki, S.; Wang, J.; Tokunaga, E.; Shibata, N. Org. Lett. 2017, 19, 1012.
[8]
(b) Saidalimu, I.; Yoshioka, T.; Liang, Y.; Tokunaga, E.; Shibata, N. Chem. Commun. 2018, 54, 8761.
[9]
Luo, J.-Y.; Lin, M.-Z.; Wu, L.-F.; Cai, Z.-H.; He, L.; Du, G.-F. Org. Biomol. Chem. 2021, 19, 9237.
[10]
(a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606.
[10]
(b) Biju, A. I.; Kuhl, N.; Glorius, F. Acc. Chem. Res. 2011, 44, 1182.
[10]
(c) Mabatthananchai, J.; Bode, J. W. Chem. Sci. 2012, 3, 192.
[10]
(d) Grossmann, A.; Enders, D. Angew. Chem.. Int. Ed. 2012, 51, 314.
[10]
(e) lzquierdo, J.; Hutson, G. E.; Cohen, D. T.; Scheidt, K. A. Angew. Chem.. Int. Ed. 2012, 51, 11686.
[10]
(f) Hopkinson, N.; Richter, C.; Schedler, M.; Glorius, F. Natur. 2014, 510, 485.
[10]
(g) Menon, R. S.; Biju, A. I.; Nair, V. Chem. Soc. Rev. 2015, 44, 5040.
[10]
(h) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, L. Chem. Rev. 2015, 115, 9307.
[10]
(i) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906.
[10]
(j) Wang, Q.-T.; Meng, W.; Feng, X.-Q.; Du, H.-F. Chin. J. Chem. 2021, 39, 918.
[10]
(k) Cui, Z.-Z.; Wang, B.-N.; Li, J.-X.; Pang, R.-L.; Kang, Y.-R.; Xiao, X.-Q. Chin. J. Chem. 2021, 39, 2410.
[10]
(l) Li, S.-Z.; Ouyang, Z.-W.; Zou, J.-J.; Wang, D.-Y.; Xu, B.; Deng, L. Acta Chim. Sinic. 2022, 80, 272 (in Chinese).
[10]
(李尚钊, 欧阳振武, 邹俊杰, 王东阳, 许斌, 邓亮, 化学学报. 2022, 80, 272.)
[11]
(a) Grasa, G. A.; Kissling, R. M.; Nolan, S. P. Org. Lett. 2002, 4, 3583.
[11]
(b) Singh, R.; Kissling, R. M.; Letellier, M. A.; Nolan, S. P. J. Org. Chem. 2004, 69, 209.
[11]
(c) Grasa, G. A.; Giveli, I.; Singh, R.; Nolan, S. P. J. Org. Chem. 2003, 68, 2812.
[11]
(d) Kano, I.; Sasaki, K.; Maruoka, K. Org. Lett. 2005, 7, 1347.
[11]
(e) Nyce, G. W.; Lamboy, J. A.; Connolr, E. F.; Waymouth, R. M.; Hedrick, J. L. Org. Lett. 2002, 4, 3587.
[11]
(f) Zeng, I.-Q.; Song, G.-H.; Li, C.-J. Chem. Commun. 2009, 41, 6249.
[11]
(g) Movassaghi, M.; Schmidt, M. A. Org. Lett. 2005, 7, 2453.
[11]
(h) Guo, H.; Wang Y., Du, G.-F.; Dai, B.; He, L. Tetrahedro. 2015, 71, 3472.
[12]
(a) José Aurell, M.; Domingo, L. R.; Arnó, M.; Zaragozá, R. J. Org. Biomol. Chem. 2016, 14, 8338.
[12]
(b) Luo, C.; Xu, X.-Y.; Xu, J.-F.; Chen, X.-K. Org. Biomol. Chem. 2022, 20, 9298.
[12]
(c) Shi, Q.-Q.; Wang, Y.; Wang, Y.-Y.; Qu, L.-B.; Qiao, Y.; Wei, D.-H. Org. Chem. Front. 2018, 5, 2739.
[12]
(d) Mukherjee, S.; Joseph, S.; Bhunia, A.; Gonnade, R. G.; Yetra, S. R.; Biju, A. T. Org. Biomol. Chem. 2017, 15, 2013.
[12]
(e) Patra, A.; James, A.; Das, T. K.; Biju, A. T. J. Org. Chem. 2018, 83, 14820.
[12]
(f) Lyngvi, E.; Bode, J. W.; Schoenebeck, F. Chem. Sci. 2012, 3, 2346.
[12]
(g) Wu, L.-L.; Yu, B.; Li, E.-Q. Adv. Synth. Catal. 2020, 362, 4010.
[12]
(h) Balanna, K.; Madica, K.; Mukherjee, S.; Ghosh, A.; Poisson, T.; Besset, T.; Jindal, G.; Biju, A. T. Chem.-Eur. J. 2020, 26, 818.
[12]
(i) Meng, D.; Xie, Y.-X; Peng, Q.-P.; Wang, J. Org. Lett. 2020, 22, 7635.
[12]
(j) Yong, X.-F.; Ng, E.-W.-H.; Zhen, Z.; Lin, X.-L.; Gao, W.-W.; Ho, C.-Y. Adv. Synth. Catal. 2020, 362, 4164.
[12]
(k) Li, Y.; Zhang, Z. Q. RSC Adv. 2019, 9, 7635.
[12]
(l) Song, X.; Chen, Y.-X.; Lu, F.-F.; Zhang, K.; Yu, C.-X.; Li, T.-J.; Yao, C.-S. Org. Biomol. Chem. 2022, 20, 1219.
[12]
(m) Qiu, Y.; Liang, Z.-Q.; Chen, K.-Q; Dai, L.; Ye, S. Org. Chem. Front. 2023, 10, 799.
[12]
(n) Zhang, C.-L.; Wang, H.-Y.; Huang, Y.; Wang, X.-H.; Ye, S. Org. Lett. 2022, 24, 7747.
[12]
(o) Zhang, Z.-F.; Gao, Z.-H.; Zhang, C.-L.; Ye, S. Tetrahedro. 2021, 94, 132337.
[12]
(p) Xia, Z.-H.; Dai, L.; Gao, Z.-H.; Ye, S. Chem. Commun. 2020, 56, 1525.
[12]
(q) Han, Y.-F.; Gao, Z.-H.; Zhang, C.-L.; Ye, S. Org. Lett. 2020, 22, 8396.
[13]
(a) Qiu, Y.; Dai, L.; Gao, Z.-H.; Ye, S. Org. Biomol. Chem. 2023, 2023, 21, 4750.
[13]
(b) Dai, L.; Ye, S. Org. Lett. 2020, 22, 986.
[14]
(a) Chen, K.-Q.; Sheng, H.; Liu, Q.; Shao, P.-L.; Chen, X.-Y. Sci. China: Chem. 2021, 64, 7.
[14]
(b) Liu, K.; Schwenzer, M.; Studer, A. ACS Catal. 2022, 12, 11984.
[14]
(c) Dai, L.; Ye, S. Chin. Chem. Lett. 2021, 32, 660.
[14]
(d) Huang, H.; Dai, Q.-S.; Leng, H.-J.; Li, Q.-Z.; Yang, S.-L.; Tao, Y.-M.; Zhang, X.; Qia, T.; Li, J.-L. Chem. Sci. 2022, 13, 2584.
[14]
(e) Matsuki, Y.; Ohnishi, N.; Kakeno, Y.; Takemoto, S.; Ishii, T.; Nagao, K.; Ohmiya, H. Nat. Commun. 2021, 12, 3848.
[14]
(f) Lv, J.; Jin, Z.-C.; Wang, H.-L.; Chi, Y.-G.-R. ACS Sustainable Chem. Eng. 2022, 10, 42.
[14]
(g) Li, Q.-Z.; Zeng, R.; Han, B.; Li, J.-L. Chem.-Eur. J. 2021, 27, 3238.
[14]
(h) Ishii, T.; Nagao, K.; Ohmiya, H. Chem. Sci. 2020, 11, 5630.
[14]
(i) Wan, D.-H.; Yang, H.-B. Synthesi. 2022, 54, 3307.
[14]
(j) Rostovskii, N. V.; Sakharov, P. A.; Novikov, M. S.; Khlebnikov, A. F.; Starova, G. L. Org. Lett. 2015, 17, 4148.
[14]
(k) Sheng, H.; Liu, Q.; Zhang, B.-B.; Wang, Z.-X.; Chen, X.-Y. Angew. Chem.. Int. Ed. 2023, e202305088.
[14]
(l) Sheng, H.; Liu, Q.; Su, X.-D.; Lu, Y.; Wang, Z.-X.; Chen, X.-Y. Org. Lett. 2020, 22, 7187.
[14]
(m) Liua, Q.; Chen, X.-Y. Org. Chem. Front. 2020, 7, 2082.
[14]
(n) Xu, Y.-Y.; Dai, L.; Gao, Z.-H.; Ye, S. J. Org. Chem. 2022, 87, 14970.
[14]
(o) Dai, L.; Xu, Y.-Y.; Xia, Z.-H.; Ye, S. Org. Lett. 2020, 22, 8173.
[14]
(p) Dai, L.; Xia, Z.-H.; Gao, Y.-Y.; Gao, Z.-H.; Ye, S. Angew. Chem.. Int. Ed. 2019, 58, 18124.
[14]
(q) Wang, J.-M.; Chen, T.; Yao, C.-S.; Zhang, K. Org. Lett. 2023, 25, 3325.
[15]
(a) Fuchter M. J. Chem.-Eur. J. 2010, 16, 12286.
[15]
(b) He, L.; Guo, H.; Wang, Y.; Du, G.-F.; Dai, B. Tetrahedron Lett. 2015, 56, 972.
[16]
(a) Song, J. J.; Gallou, F.; Reeves, J. T.; Tan, Z.; Yee, N. K.; Senanayake, C. H. J. Org. Chem. 2006, 71, 1273.
[16]
(b) Fukuda, Y.; Maeda, Y.; Ishii, S.; Kondo, K.; Aoyama, T. Synthesi. 2006, 589.
[16]
(c) Tan, M.; Zhang, Y.; Ying, J. Y. Adv. Synth. Catal. 2009, 351, 1390.
[17]
Nguyen, K.; Lupton, D. W. Aust. J. Chem. 2017, 70, 436.
[18]
(a) Song, J.-J.; Tan, Z.; Reeves, J. T.; Gallou, F.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2005, 7, 2193.
[18]
(b) Reddy, V.P.; Perambuduru, M.; Mehta, J. Top Catal. 2018, 61, 699.
[19]
Wu, J.; Sun, X.; Ye, S.; Sun, W. Tetrahedron Lett. 2006, 47, 4813.
[20]
(a) Raynaud, J.; Ciolino, A.; Baceiredo, A.; Destarac, M.; Bonnette, F.; Kato, T.; Gnanou, Y.; Taton, D. Angew. Chem.. Int. Ed. 2008, 47, 5390.
[20]
(b) Raynaud, J.; Liu, N.; Gnanou, Y.; Taton, D. Macromolecule. 2010, 43, 8853.
[20]
(c) Raynaud, J.; Liu, N.; Févre, M.; Gnanou, Y.; Taton, D. Polym. Chem. 2011, 2, 1706.
[20]
(d) Lohmeijer, B. G.; Dubois, G.; Leibfarth, F.; Pratt, R. C.; Nederberg, F.; Nelson, A.; Waymouth, R. M.; Wade, C.; Hedrick, J. L. Org. Lett. 2006, 8, 4683.
[20]
(e) Brown, H. A.; Chang, Y. A.; Waymouth, R. M. J. Am. Chem. Soc. 2013, 135, 18738.
[21]
Du, G.-F.; He, L.; Gu, C. Z.; Dai, B. Synlet. 2010, 16, 2513
[22]
(a) Cai, Z. H.; Du, G. F.; He, L.; Gu, C. Z.; Dai, B. Synthesi. 2011, 2073.
[22]
(b) Cai, Z.-H.; Du, G.-F.; Dai, B.; He, L. Synthesi. 2012, 44, 694.
[23]
Fan, Y. C.; Du, G. F.; Sun, W. F.; Kang, W.; He, L. Tetrahedron Lett. 2012, 53, 2231.
[24]
(a) Zou, X. L.; Du, G.-F.; Sun, W. F.; He, L.; Ma, X. W.; Gu, C. Z.; Dai, B. Tetrahedro. 2013, 69, 607.
[24]
(b) Wang, Y.; Xing, F.; Gu, C.-Z.; Li, W.-J.; He, L.; Dai, B.; Du, G.-F. Tetrahedro. 2017, 73, 4501.
[25]
Wang, Y.; Du, G.-F.; Xing, F.; Huang, K.-W.; Dai, B.; He, L. Asian J. Org. Chem. 2015, 4, 1362.
[26]
Wang, Y.; Du, G.-F.; Gu, C.-Z.; Xing, F.; Dai, B.; He, L. Tetrahedro. 2016, 72, 472.
[27]
Du, G.-F.; Xing, F.; Gu, C.-Z.; Dai, B.; He, L. RSC Adv. 2015, 5, 35513.
[28]
Schmidt, D.; Berthel, J. H. J.; Pietsch, S.; Radius, U. Angew. Chem.. Int. Ed. 2012, 51, 8881.
[29]
Zhao, X.; Liu, T.-X.; Zhang, G. Asian J. Org. Chem. 2017, 6, 677.
[30]
Chen, Q.; Huang, Y.; Wang, X.; Wu, J.; Yu, G. Org. Biomol. Chem. 2018, 16, 1713
[31]
Wang, J.; Li, H.-C.; Leng, T.; Liu, M.-C.; Ding, J.-C.; Huang, X.-B.; Wu, H.-Y.; Gao, W.-X.; Wu, G. Org. Biomol. Chem. 2017, 15, 9718.
文章导航

/