综述与进展

烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展

  • 朱彦硕 ,
  • 王红言 ,
  • 舒朋华 ,
  • 张克娜 ,
  • 王琪琳
展开
  • a 许昌学院食品与药学院 河南许昌 461000
    b 河南大学化学与分子科学学院 河南开封 475004
    c 许昌学院继续教育学院 河南许昌 461000

收稿日期: 2023-07-31

  修回日期: 2023-09-26

  网络出版日期: 2023-10-30

基金资助

国家自然科学基金(22101073); 中国博士后科学基金(2020M672200); 及河南省高等学校重点科研(24A350016)

Recent Advances on Alkoxy Radicals-Mediated C(sp3)—H Bond Functionalization via 1,5-Hydrogen Atom Transfer

  • Yanshuo Zhu ,
  • Hongyan Wang ,
  • Penghua Shu ,
  • Ke'na Zhang ,
  • Qilin Wang
Expand
  • a Food and Pharmacy College, Xuchang University, Xuchang, Henan 461000
    b College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004
    c School of Continuing Education, Xuchang University, Xuchang, Henan 461000

Received date: 2023-07-31

  Revised date: 2023-09-26

  Online published: 2023-10-30

Supported by

National Natural Science Foundation of China(22101073); China Postdoctoral Science Foundation(2020M672200); Foundation of He'nan Educational Committee(24A350016)

摘要

分子内氢原子转移(HAT)是实现远程C(sp3)—H键官能化的有效方法. 烷氧自由基作为有机合成中的重要中间体, 其参与的分子内氢原子转移反应一直倍受关注. 特别是随着可见光催化技术的发展, 在温和条件下就可以生成烷氧自由基, 为烷氧自由基引发的远程C(sp3)—H键官能团化反应提供了新的平台. 综述了近五年来烷氧基自由基产生的不同方法及其引发的分子内1,5-HAT反应在C(sp3)—H键官能团化方面的研究进展.

本文引用格式

朱彦硕 , 王红言 , 舒朋华 , 张克娜 , 王琪琳 . 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024 , 44(1) : 1 -17 . DOI: 10.6023/cjoc202307028

Abstract

Intramolecular hydrogen atom transfer (HAT) has proved to be an effective method to achieve the selective functionalization of remote C—H bonds. In this fascinating research area, alkoxy radicals have emerged as an important intermediate to participate in intramolecular hydrogen atom transfer reactions. In particular, the burgeoning visible-light photoredox catalysis has provided a new platform for O-radical directed remote functionalization of C(sp3)—H bonds. The progress on the different mechanisms of alkoxy radical generation and their applications in the intramolecular 1,5-HAT reactions for remote C(sp3)—H bond functionalization in the past five years are comprehensively summarized.

参考文献

[1]
Galeotti, M.; Salamone, M.; Bietti, M. Chem. Soc. Rev. 2022, 51, 2171.
[2]
Huang, X.; Groves, J. T. J. Biol. Inorg. Chem. 2017, 22, 185.
[3]
(a) Jia, K.-F.; Chen, Y.-Y. Chem. Commun. 2018, 54, 6105.
[3]
(b) Sarkar, S.; Cheung, K. P. S.; Gevorgyan, V. Chem. Sci. 2020, 11, 12974.
[3]
(c) Li, W.-D.; Xia, J.-B. Chin. J. Org. Chem. 2020, 40, 4375 (in Chinese).
[3]
(李文多, 夏纪宝, 有机化学, 2020, 40, 4375.)
[3]
(d) Wu, X.-X.; Zhu, C. Trends Chem. 2022, 4, 580.
[3]
(e) Zhang, W.-M.; Feng, K.-W.; Hu, R.-G.; Guo, Y.-J.; Li, Y. Chem 2023, 9, 430.
[4]
(a) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. J. Am. Chem. Soc. 1960, 82, 2640.
[4]
(b) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. J. Am. Chem. Soc. 1961, 83, 4076.
[4]
(c) Barton, D. H. R.; Hesse, R. H.; Pechet, M. M.; Smith, L. C. J. Chem. Soc., Perkin Trans. 1 1979, 1159.
[5]
(a) ?ekovi?, ?. Tetrahedron 2003, 59, 8073.
[5]
(b) Chiba, S.; Chen, H. Org. Biomol. Chem. 2014, 12, 4051.
[5]
(c) Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis 2018, 50, 1569.
[6]
Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.
[7]
(a) Heusler, K.; Kalvoda, J. Angew. Chem., Int. Ed. 1964, 3, 525.
[7]
(b) Kalvoda, J.; Heusler, K. Synthesis 1971, 501.
[8]
(a) Walling, C.; Bristol, D. J. Org. Chem. 1972, 37, 3514.
[8]
(b) Walling, C.; Clark, R. T. J. Am. Chem. Soc. 1974, 96, 4530.
[8]
(c) Martin, A.; Salazar, J. A.; Suarez, E. J. Org. Chem. 1996, 61, 3999.
[8]
(d) Martin, A.; Perez-Martin, I.; Suarez, E. Org. Lett. 2005, 7, 2027.
[9]
(a) Cekovic, Z.; Dimitrijevic, L.; Djokic, G.; Srnic, T. Tetrahedron 1979, 35, 2021.
[9]
(b) Cekovic, Z.; Cvetkovic, M. Tetrahedron Lett. 1982, 23, 3791.
[9]
(c) Too, P. C.; Tnay, Y. L.; Chiba, S. Beilstein. J. Org. Chem. 2013, 9, 1217.
[10]
Wu, X.-X.; Zhu, C. Chem. Commun. 2019, 55, 9747.
[11]
Tsui, E.; Wang, H.-J.; Knowles, R.-R. Chem. Sci. 2020, 11, 11124.
[12]
Guo, W.-S.; Wang, Q.; Zhu, J.-P. Chem. Soc. Rev. 2021, 50, 7359.
[13]
Chang, L.; An, Q.; Duan, L.-F.; Feng, K.-X.; Zuo, Z.-W. Chem. Rev. 2022, 122, 2429.
[14]
Hu, A.-H.; Guo, J.-J.; Pan, H.; Tang, H.-M.; Gao, Z.-B.; Zuo, Z.-W. J. Am. Chem. Soc. 2018, 140, 1612.
[15]
Xiong, N.; Li, Y.; Zeng, R. Org. Lett. 2021, 23, 8968.
[16]
Jue, Z.-F.; Huang, Y.-H.; Qian, J.-H.; Hu, P. ChemSusChem 2022, 15, e202201241.
[17]
Wu, X.-X.; Wang, M.-Y.; Huan, L.-T.; Wang, D.-P.; Wang, J.-W.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 1640.
[18]
Wang, M.; Huan, L.-T.; Zhu, C. Org. Lett. 2019, 21, 821.
[19]
Zhu, Y.-C.; Huang, K.-M.; Pan, J.; Qiu, X.; Luo, X.; Qin, Q.-X.; Wei, J.-L.; Wen, X.-J.; Zhang, L.-Z.; Jiao, N. Nat. Commun. 2018, 9, 2625.
[20]
Cao, Zhu.; Ji, M.-S.; Wang, X.-X.; Wu, X.-X.; Li, Y.-H.; Zhu, C. Green Chem. 2022, 24, 4498.
[21]
Zhou, J.-D.; Cheng, C.; Lin, Z.-H.; Ren, Q.-L.; Xu, N.; Lin, J.-F.; Qin, Y.-M.; Li, J.-J. Org. Chem. Front. 2021, 8, 101.
[22]
Wang, M.; Yin, C.-Z.; Hu, P. Org. Lett. 2021, 23, 722.
[23]
Xu, Z.-B.; Gao, Y.-M.; Wang, S.-S.; Zhang, Q.-L.; Zhang, L.-Z.; Shen, L. J. Org. Chem. 2022, 87, 3461.
[24]
Zhang, J.; Li, Y.; Zhang, F.-Y.; Hu, C.-C.; Chen, Y.-Y. Angew. Chem., Int. Ed. 2016, 55, 1872.
[25]
Wang, C.-Y.; Harms, K.; Meggers, E. Angew. Chem., Int. Ed. 2016, 55, 13495.
[26]
Wang, C.-Y.; Yu, Y.-Y.; Liu, W.-L.; Duan, W.-L. Org. Lett. 2019, 21, 9147.
[27]
Cheng, Z.-M.; Chen, P.-H.; Liu, G.-S. Acta Chim. Sinica 2019, 77, 856 (in Chinese).
[27]
(成忠明, 陈品红, 刘国生, 化学学报, 2019, 77, 856.)
[28]
Deng, Y.-S.; Lu, R.-H.; Chen, P.-H.; Liu, G.-S. Chem. Commun. 2023, 59, 4656.
[29]
Liu, Z.-Y.; Pan, Y.; Zou, P.; Huang, H.-C.; Chen, Y.-L.; Chen, Y.-Y. Org. Lett. 2022, 24, 5951.
[30]
Herron, A. N.; Liu, D.-X.; Xia, G.-Q.; Yu, J.-Q. J. Am. Chem. Soc. 2020, 142, 2766.
[31]
(a) Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 1692.
[31]
(b) Morcillo, S. P.; Dauncey, E. M.; Kim, J. H.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 12945.
[32]
Fang, D.; Zhang, Y.-D.; Chen, Y.-Y. Org. Lett. 2022, 24, 2050.
[33]
Ondrejková, A.; Lindroth, R.; Hilmersson, G.; Wallentin, C.-J. Chem. Commun. 2022, 58, 10241.
[34]
Kim, I.; Park, B.; Kang, G.; Kim, J.; Jung, H.; Lee, H.; Baik, M. H.; Hong, S. Angew. Chem., Int. Ed. 2018, 57, 15517.
[35]
Bao, X.; Wang, Q.; Zhu, J.-P. Angew. Chem., Int. Ed. 2019, 58, 2139.
[36]
Bao, X.; Wang, Q.; Zhu, J.-P. Chem.-Eur. J. 2019, 25, 11630.
[37]
Zheng, Z.-P.; Shi, S.-S.; Ma, Q.-R.; Yang, Y.-F.; Liu, Y.; Tang, G.-Y.; Zhao, F. Org. Chem. Front. 2021, 8, 6845.
[38]
Wu, X.-X.; Zhang, H.; Tang, N.-N.; Wu, Z.; Wang, D.-P.; Ji, M.-S.; Xu, Y.; Wang, M.; Zhu, C. Nat. Commun. 2018, 9, 1.
[39]
Cao, Z.; Ji, M.-S.; Wang, X.-X; Wu, X.-X.; Li, Y.-H.; Zhu, C. Green Chem. 2022, 24, 4498.
[40]
Li, G.-X.; Hu, X.-F.; He, G.; Chen, G. Chem. Sci. 2019, 10, 688.
[41]
Rivero, A.-R.; Fodran, P.; Ondrejková, A.; Wallentin, C.-J. Org. Lett. 2020, 22, 8436.
[42]
Kim, K.; Kim, N.; Hong, S. Bull. Korean Chem. Soc. 2021, 42, 548.
[43]
Fabien, P.-C.; Louise, R.; Samuel, C.-B.; Tatiana, B. Adv. Synth. Catal. 2022, 364, 1498.
[44]
Guan, H.-H.; Sun, S.-T.; Mao, Y.; Chen, L.; Lu, R.; Huang, J.-C.; Liu, L. Angew. Chem., Int. Ed. 2018, 57, 11413.
[45]
Groendyke, B. J.; Modak, A. S.; Cook, P. J. Org. Chem. 2019, 84, 13073.
文章导航

/