烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展
收稿日期: 2023-07-31
修回日期: 2023-09-26
网络出版日期: 2023-10-30
基金资助
国家自然科学基金(22101073); 中国博士后科学基金(2020M672200); 及河南省高等学校重点科研(24A350016)
Recent Advances on Alkoxy Radicals-Mediated C(sp3)—H Bond Functionalization via 1,5-Hydrogen Atom Transfer
Received date: 2023-07-31
Revised date: 2023-09-26
Online published: 2023-10-30
Supported by
National Natural Science Foundation of China(22101073); China Postdoctoral Science Foundation(2020M672200); Foundation of He'nan Educational Committee(24A350016)
朱彦硕 , 王红言 , 舒朋华 , 张克娜 , 王琪琳 . 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024 , 44(1) : 1 -17 . DOI: 10.6023/cjoc202307028
Intramolecular hydrogen atom transfer (HAT) has proved to be an effective method to achieve the selective functionalization of remote C—H bonds. In this fascinating research area, alkoxy radicals have emerged as an important intermediate to participate in intramolecular hydrogen atom transfer reactions. In particular, the burgeoning visible-light photoredox catalysis has provided a new platform for O-radical directed remote functionalization of C(sp3)—H bonds. The progress on the different mechanisms of alkoxy radical generation and their applications in the intramolecular 1,5-HAT reactions for remote C(sp3)—H bond functionalization in the past five years are comprehensively summarized.
| [1] | Galeotti, M.; Salamone, M.; Bietti, M. Chem. Soc. Rev. 2022, 51, 2171. |
| [2] | Huang, X.; Groves, J. T. J. Biol. Inorg. Chem. 2017, 22, 185. |
| [3] | (a) Jia, K.-F.; Chen, Y.-Y. Chem. Commun. 2018, 54, 6105. |
| [3] | (b) Sarkar, S.; Cheung, K. P. S.; Gevorgyan, V. Chem. Sci. 2020, 11, 12974. |
| [3] | (c) Li, W.-D.; Xia, J.-B. Chin. J. Org. Chem. 2020, 40, 4375 (in Chinese). |
| [3] | (李文多, 夏纪宝, 有机化学, 2020, 40, 4375.) |
| [3] | (d) Wu, X.-X.; Zhu, C. Trends Chem. 2022, 4, 580. |
| [3] | (e) Zhang, W.-M.; Feng, K.-W.; Hu, R.-G.; Guo, Y.-J.; Li, Y. Chem 2023, 9, 430. |
| [4] | (a) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. J. Am. Chem. Soc. 1960, 82, 2640. |
| [4] | (b) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. J. Am. Chem. Soc. 1961, 83, 4076. |
| [4] | (c) Barton, D. H. R.; Hesse, R. H.; Pechet, M. M.; Smith, L. C. J. Chem. Soc., Perkin Trans. 1 1979, 1159. |
| [5] | (a) ?ekovi?, ?. Tetrahedron 2003, 59, 8073. |
| [5] | (b) Chiba, S.; Chen, H. Org. Biomol. Chem. 2014, 12, 4051. |
| [5] | (c) Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis 2018, 50, 1569. |
| [6] | Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25. |
| [7] | (a) Heusler, K.; Kalvoda, J. Angew. Chem., Int. Ed. 1964, 3, 525. |
| [7] | (b) Kalvoda, J.; Heusler, K. Synthesis 1971, 501. |
| [8] | (a) Walling, C.; Bristol, D. J. Org. Chem. 1972, 37, 3514. |
| [8] | (b) Walling, C.; Clark, R. T. J. Am. Chem. Soc. 1974, 96, 4530. |
| [8] | (c) Martin, A.; Salazar, J. A.; Suarez, E. J. Org. Chem. 1996, 61, 3999. |
| [8] | (d) Martin, A.; Perez-Martin, I.; Suarez, E. Org. Lett. 2005, 7, 2027. |
| [9] | (a) Cekovic, Z.; Dimitrijevic, L.; Djokic, G.; Srnic, T. Tetrahedron 1979, 35, 2021. |
| [9] | (b) Cekovic, Z.; Cvetkovic, M. Tetrahedron Lett. 1982, 23, 3791. |
| [9] | (c) Too, P. C.; Tnay, Y. L.; Chiba, S. Beilstein. J. Org. Chem. 2013, 9, 1217. |
| [10] | Wu, X.-X.; Zhu, C. Chem. Commun. 2019, 55, 9747. |
| [11] | Tsui, E.; Wang, H.-J.; Knowles, R.-R. Chem. Sci. 2020, 11, 11124. |
| [12] | Guo, W.-S.; Wang, Q.; Zhu, J.-P. Chem. Soc. Rev. 2021, 50, 7359. |
| [13] | Chang, L.; An, Q.; Duan, L.-F.; Feng, K.-X.; Zuo, Z.-W. Chem. Rev. 2022, 122, 2429. |
| [14] | Hu, A.-H.; Guo, J.-J.; Pan, H.; Tang, H.-M.; Gao, Z.-B.; Zuo, Z.-W. J. Am. Chem. Soc. 2018, 140, 1612. |
| [15] | Xiong, N.; Li, Y.; Zeng, R. Org. Lett. 2021, 23, 8968. |
| [16] | Jue, Z.-F.; Huang, Y.-H.; Qian, J.-H.; Hu, P. ChemSusChem 2022, 15, e202201241. |
| [17] | Wu, X.-X.; Wang, M.-Y.; Huan, L.-T.; Wang, D.-P.; Wang, J.-W.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 1640. |
| [18] | Wang, M.; Huan, L.-T.; Zhu, C. Org. Lett. 2019, 21, 821. |
| [19] | Zhu, Y.-C.; Huang, K.-M.; Pan, J.; Qiu, X.; Luo, X.; Qin, Q.-X.; Wei, J.-L.; Wen, X.-J.; Zhang, L.-Z.; Jiao, N. Nat. Commun. 2018, 9, 2625. |
| [20] | Cao, Zhu.; Ji, M.-S.; Wang, X.-X.; Wu, X.-X.; Li, Y.-H.; Zhu, C. Green Chem. 2022, 24, 4498. |
| [21] | Zhou, J.-D.; Cheng, C.; Lin, Z.-H.; Ren, Q.-L.; Xu, N.; Lin, J.-F.; Qin, Y.-M.; Li, J.-J. Org. Chem. Front. 2021, 8, 101. |
| [22] | Wang, M.; Yin, C.-Z.; Hu, P. Org. Lett. 2021, 23, 722. |
| [23] | Xu, Z.-B.; Gao, Y.-M.; Wang, S.-S.; Zhang, Q.-L.; Zhang, L.-Z.; Shen, L. J. Org. Chem. 2022, 87, 3461. |
| [24] | Zhang, J.; Li, Y.; Zhang, F.-Y.; Hu, C.-C.; Chen, Y.-Y. Angew. Chem., Int. Ed. 2016, 55, 1872. |
| [25] | Wang, C.-Y.; Harms, K.; Meggers, E. Angew. Chem., Int. Ed. 2016, 55, 13495. |
| [26] | Wang, C.-Y.; Yu, Y.-Y.; Liu, W.-L.; Duan, W.-L. Org. Lett. 2019, 21, 9147. |
| [27] | Cheng, Z.-M.; Chen, P.-H.; Liu, G.-S. Acta Chim. Sinica 2019, 77, 856 (in Chinese). |
| [27] | (成忠明, 陈品红, 刘国生, 化学学报, 2019, 77, 856.) |
| [28] | Deng, Y.-S.; Lu, R.-H.; Chen, P.-H.; Liu, G.-S. Chem. Commun. 2023, 59, 4656. |
| [29] | Liu, Z.-Y.; Pan, Y.; Zou, P.; Huang, H.-C.; Chen, Y.-L.; Chen, Y.-Y. Org. Lett. 2022, 24, 5951. |
| [30] | Herron, A. N.; Liu, D.-X.; Xia, G.-Q.; Yu, J.-Q. J. Am. Chem. Soc. 2020, 142, 2766. |
| [31] | (a) Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 1692. |
| [31] | (b) Morcillo, S. P.; Dauncey, E. M.; Kim, J. H.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 12945. |
| [32] | Fang, D.; Zhang, Y.-D.; Chen, Y.-Y. Org. Lett. 2022, 24, 2050. |
| [33] | Ondrejková, A.; Lindroth, R.; Hilmersson, G.; Wallentin, C.-J. Chem. Commun. 2022, 58, 10241. |
| [34] | Kim, I.; Park, B.; Kang, G.; Kim, J.; Jung, H.; Lee, H.; Baik, M. H.; Hong, S. Angew. Chem., Int. Ed. 2018, 57, 15517. |
| [35] | Bao, X.; Wang, Q.; Zhu, J.-P. Angew. Chem., Int. Ed. 2019, 58, 2139. |
| [36] | Bao, X.; Wang, Q.; Zhu, J.-P. Chem.-Eur. J. 2019, 25, 11630. |
| [37] | Zheng, Z.-P.; Shi, S.-S.; Ma, Q.-R.; Yang, Y.-F.; Liu, Y.; Tang, G.-Y.; Zhao, F. Org. Chem. Front. 2021, 8, 6845. |
| [38] | Wu, X.-X.; Zhang, H.; Tang, N.-N.; Wu, Z.; Wang, D.-P.; Ji, M.-S.; Xu, Y.; Wang, M.; Zhu, C. Nat. Commun. 2018, 9, 1. |
| [39] | Cao, Z.; Ji, M.-S.; Wang, X.-X; Wu, X.-X.; Li, Y.-H.; Zhu, C. Green Chem. 2022, 24, 4498. |
| [40] | Li, G.-X.; Hu, X.-F.; He, G.; Chen, G. Chem. Sci. 2019, 10, 688. |
| [41] | Rivero, A.-R.; Fodran, P.; Ondrejková, A.; Wallentin, C.-J. Org. Lett. 2020, 22, 8436. |
| [42] | Kim, K.; Kim, N.; Hong, S. Bull. Korean Chem. Soc. 2021, 42, 548. |
| [43] | Fabien, P.-C.; Louise, R.; Samuel, C.-B.; Tatiana, B. Adv. Synth. Catal. 2022, 364, 1498. |
| [44] | Guan, H.-H.; Sun, S.-T.; Mao, Y.; Chen, L.; Lu, R.; Huang, J.-C.; Liu, L. Angew. Chem., Int. Ed. 2018, 57, 11413. |
| [45] | Groendyke, B. J.; Modak, A. S.; Cook, P. J. Org. Chem. 2019, 84, 13073. |
/
| 〈 |
|
〉 |