有机化学 ›› 2024, Vol. 44 ›› Issue (1): 1-17.DOI: 10.6023/cjoc202307028 上一篇 下一篇
综述与进展
朱彦硕a, 王红言c, 舒朋华a, 张克娜a, 王琪琳b,*()
收稿日期:
2023-07-31
修回日期:
2023-09-26
发布日期:
2023-10-30
基金资助:
Yanshuo Zhua, Hongyan Wangc, Penghua Shua, Ke'na Zhanga, Qilin Wangb()
Received:
2023-07-31
Revised:
2023-09-26
Published:
2023-10-30
Contact:
*E-mail: Supported by:
文章分享
分子内氢原子转移(HAT)是实现远程C(sp3)—H键官能化的有效方法. 烷氧自由基作为有机合成中的重要中间体, 其参与的分子内氢原子转移反应一直倍受关注. 特别是随着可见光催化技术的发展, 在温和条件下就可以生成烷氧自由基, 为烷氧自由基引发的远程C(sp3)—H键官能团化反应提供了新的平台. 综述了近五年来烷氧基自由基产生的不同方法及其引发的分子内1,5-HAT反应在C(sp3)—H键官能团化方面的研究进展.
朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17.
Yanshuo Zhu, Hongyan Wang, Penghua Shu, Ke'na Zhang, Qilin Wang. Recent Advances on Alkoxy Radicals-Mediated C(sp3)—H Bond Functionalization via 1,5-Hydrogen Atom Transfer[J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 1-17.
[1] |
Galeotti, M.; Salamone, M.; Bietti, M. Chem. Soc. Rev. 2022, 51, 2171.
doi: 10.1039/D1CS00556A |
[2] |
Huang, X.; Groves, J. T. J. Biol. Inorg. Chem. 2017, 22, 185.
doi: 10.1007/s00775-016-1414-3 |
[3] |
(a) Jia, K.-F.; Chen, Y.-Y. Chem. Commun. 2018, 54, 6105.
doi: 10.1039/C8CC02642D |
(b) Sarkar, S.; Cheung, K. P. S.; Gevorgyan, V. Chem. Sci. 2020, 11, 12974.
doi: 10.1039/D0SC04881J |
|
(c) Li, W.-D.; Xia, J.-B. Chin. J. Org. Chem. 2020, 40, 4375 (in Chinese).
doi: 10.6023/cjoc202000087 |
|
(李文多, 夏纪宝, 有机化学, 2020, 40, 4375.)
|
|
(d) Wu, X.-X.; Zhu, C. Trends Chem. 2022, 4, 580.
doi: 10.1016/j.trechm.2022.04.003 |
|
(e) Zhang, W.-M.; Feng, K.-W.; Hu, R.-G.; Guo, Y.-J.; Li, Y. Chem 2023, 9, 430.
doi: 10.1016/j.chempr.2022.10.011 |
|
[4] |
(a) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. J. Am. Chem. Soc. 1960, 82, 2640.
doi: 10.1021/ja01495a061 |
(b) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. J. Am. Chem. Soc. 1961, 83, 4076.
doi: 10.1021/ja01480a030 |
|
(c) Barton, D. H. R.; Hesse, R. H.; Pechet, M. M.; Smith, L. C. J. Chem. Soc., Perkin Trans. 1 1979, 1159.
|
|
[5] |
(a) Čeković, . Tetrahedron 2003, 59, 8073.
doi: 10.1016/S0040-4020(03)01202-X |
(b) Chiba, S.; Chen, H. Org. Biomol. Chem. 2014, 12, 4051.
doi: 10.1039/C4OB00469H |
|
(c) Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis 2018, 50, 1569.
doi: 10.1055/s-0036-1591930 |
|
[6] |
Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.
doi: 10.1039/a804291h |
[7] |
(a) Heusler, K.; Kalvoda, J. Angew. Chem., Int. Ed. 1964, 3, 525.
doi: 10.1002/anie.v3:8 |
(b) Kalvoda, J.; Heusler, K. Synthesis 1971, 501.
|
|
[8] |
(a) Walling, C.; Bristol, D. J. Org. Chem. 1972, 37, 3514.
doi: 10.1021/jo00795a026 |
(b) Walling, C.; Clark, R. T. J. Am. Chem. Soc. 1974, 96, 4530.
doi: 10.1021/ja00821a028 |
|
(c) Martin, A.; Salazar, J. A.; Suarez, E. J. Org. Chem. 1996, 61, 3999.
doi: 10.1021/jo960060g |
|
(d) Martin, A.; Perez-Martin, I.; Suarez, E. Org. Lett. 2005, 7, 2027.
doi: 10.1021/ol050526u |
|
[9] |
(a) Cekovic, Z.; Dimitrijevic, L.; Djokic, G.; Srnic, T. Tetrahedron 1979, 35, 2021.
doi: 10.1016/S0040-4020(01)88972-9 |
(b) Cekovic, Z.; Cvetkovic, M. Tetrahedron Lett. 1982, 23, 3791.
doi: 10.1016/S0040-4039(00)87708-4 |
|
(c) Too, P. C.; Tnay, Y. L.; Chiba, S. Beilstein. J. Org. Chem. 2013, 9, 1217.
doi: 10.3762/bjoc.9.138 |
|
[10] |
Wu, X.-X.; Zhu, C. Chem. Commun. 2019, 55, 9747.
doi: 10.1039/C9CC04785A |
[11] |
Tsui, E.; Wang, H.-J.; Knowles, R.-R. Chem. Sci. 2020, 11, 11124.
doi: 10.1039/D0SC04542J |
[12] |
Guo, W.-S.; Wang, Q.; Zhu, J.-P. Chem. Soc. Rev. 2021, 50, 7359.
doi: 10.1039/D0CS00774A |
[13] |
Chang, L.; An, Q.; Duan, L.-F.; Feng, K.-X.; Zuo, Z.-W. Chem. Rev. 2022, 122, 2429.
doi: 10.1021/acs.chemrev.1c00256 |
[14] |
Hu, A.-H.; Guo, J.-J.; Pan, H.; Tang, H.-M.; Gao, Z.-B.; Zuo, Z.-W. J. Am. Chem. Soc. 2018, 140, 1612.
doi: 10.1021/jacs.7b13131 |
[15] |
Xiong, N.; Li, Y.; Zeng, R. Org. Lett. 2021, 23, 8968.
doi: 10.1021/acs.orglett.1c03488 |
[16] |
Jue, Z.-F.; Huang, Y.-H.; Qian, J.-H.; Hu, P. ChemSusChem 2022, 15, e202201241.
|
[17] |
Wu, X.-X.; Wang, M.-Y.; Huan, L.-T.; Wang, D.-P.; Wang, J.-W.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 1640.
doi: 10.1002/anie.v57.6 |
[18] |
Wang, M.; Huan, L.-T.; Zhu, C. Org. Lett. 2019, 21, 821.
doi: 10.1021/acs.orglett.8b04104 |
[19] |
Zhu, Y.-C.; Huang, K.-M.; Pan, J.; Qiu, X.; Luo, X.; Qin, Q.-X.; Wei, J.-L.; Wen, X.-J.; Zhang, L.-Z.; Jiao, N. Nat. Commun. 2018, 9, 2625.
doi: 10.1038/s41467-018-05014-w |
[20] |
Cao, Zhu.; Ji, M.-S.; Wang, X.-X.; Wu, X.-X.; Li, Y.-H.; Zhu, C. Green Chem. 2022, 24, 4498.
doi: 10.1039/D2GC01144A |
[21] |
Zhou, J.-D.; Cheng, C.; Lin, Z.-H.; Ren, Q.-L.; Xu, N.; Lin, J.-F.; Qin, Y.-M.; Li, J.-J. Org. Chem. Front. 2021, 8, 101.
doi: 10.1039/D0QO01238F |
[22] |
Wang, M.; Yin, C.-Z.; Hu, P. Org. Lett. 2021, 23, 722.
doi: 10.1021/acs.orglett.0c03944 |
[23] |
Xu, Z.-B.; Gao, Y.-M.; Wang, S.-S.; Zhang, Q.-L.; Zhang, L.-Z.; Shen, L. J. Org. Chem. 2022, 87, 3461.
doi: 10.1021/acs.joc.1c03021 |
[24] |
Zhang, J.; Li, Y.; Zhang, F.-Y.; Hu, C.-C.; Chen, Y.-Y. Angew. Chem., Int. Ed. 2016, 55, 1872.
doi: 10.1002/anie.v55.5 |
[25] |
Wang, C.-Y.; Harms, K.; Meggers, E. Angew. Chem., Int. Ed. 2016, 55, 13495.
doi: 10.1002/anie.v55.43 |
[26] |
Wang, C.-Y.; Yu, Y.-Y.; Liu, W.-L.; Duan, W.-L. Org. Lett. 2019, 21, 9147.
doi: 10.1021/acs.orglett.9b03524 |
[27] |
Cheng, Z.-M.; Chen, P.-H.; Liu, G.-S. Acta Chim. Sinica 2019, 77, 856 (in Chinese).
doi: 10.6023/A19070252 |
(成忠明, 陈品红, 刘国生, 化学学报, 2019, 77, 856.)
|
|
[28] |
Deng, Y.-S.; Lu, R.-H.; Chen, P.-H.; Liu, G.-S. Chem. Commun. 2023, 59, 4656.
doi: 10.1039/D3CC00410D |
[29] |
Liu, Z.-Y.; Pan, Y.; Zou, P.; Huang, H.-C.; Chen, Y.-L.; Chen, Y.-Y. Org. Lett. 2022, 24, 5951.
doi: 10.1021/acs.orglett.2c02210 |
[30] |
Herron, A. N.; Liu, D.-X.; Xia, G.-Q.; Yu, J.-Q. J. Am. Chem. Soc. 2020, 142, 2766.
doi: 10.1021/jacs.9b13171 |
[31] |
(a) Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 1692.
doi: 10.1002/anie.v57.6 |
(b) Morcillo, S. P.; Dauncey, E. M.; Kim, J. H.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 12945.
doi: 10.1002/anie.v57.39 |
|
[32] |
Fang, D.; Zhang, Y.-D.; Chen, Y.-Y. Org. Lett. 2022, 24, 2050.
doi: 10.1021/acs.orglett.2c00593 |
[33] |
Ondrejková, A.; Lindroth, R.; Hilmersson, G.; Wallentin, C.-J. Chem. Commun. 2022, 58, 10241.
doi: 10.1039/D2CC03262G |
[34] |
Kim, I.; Park, B.; Kang, G.; Kim, J.; Jung, H.; Lee, H.; Baik, M. H.; Hong, S. Angew. Chem., Int. Ed. 2018, 57, 15517.
doi: 10.1002/anie.v57.47 |
[35] |
Bao, X.; Wang, Q.; Zhu, J.-P. Angew. Chem., Int. Ed. 2019, 58, 2139.
doi: 10.1002/anie.v58.7 |
[36] |
Bao, X.; Wang, Q.; Zhu, J.-P. Chem.-Eur. J. 2019, 25, 11630.
doi: 10.1002/chem.v25.50 |
[37] |
Zheng, Z.-P.; Shi, S.-S.; Ma, Q.-R.; Yang, Y.-F.; Liu, Y.; Tang, G.-Y.; Zhao, F. Org. Chem. Front. 2021, 8, 6845.
doi: 10.1039/D1QO01178B |
[38] |
Wu, X.-X.; Zhang, H.; Tang, N.-N.; Wu, Z.; Wang, D.-P.; Ji, M.-S.; Xu, Y.; Wang, M.; Zhu, C. Nat. Commun. 2018, 9, 1.
doi: 10.1038/s41467-017-02088-w |
[39] |
Cao, Z.; Ji, M.-S.; Wang, X.-X; Wu, X.-X.; Li, Y.-H.; Zhu, C. Green Chem. 2022, 24, 4498.
doi: 10.1039/D2GC01144A |
[40] |
Li, G.-X.; Hu, X.-F.; He, G.; Chen, G. Chem. Sci. 2019, 10, 688.
doi: 10.1039/C8SC04134B |
[41] |
Rivero, A.-R.; Fodran, P.; Ondrejková, A.; Wallentin, C.-J. Org. Lett. 2020, 22, 8436.
doi: 10.1021/acs.orglett.0c03058 |
[42] |
Kim, K.; Kim, N.; Hong, S. Bull. Korean Chem. Soc. 2021, 42, 548.
doi: 10.1002/bkcs.v42.3 |
[43] |
Fabien, P.-C.; Louise, R.; Samuel, C.-B.; Tatiana, B. Adv. Synth. Catal. 2022, 364, 1498.
doi: 10.1002/adsc.v364.8 |
[44] |
Guan, H.-H.; Sun, S.-T.; Mao, Y.; Chen, L.; Lu, R.; Huang, J.-C.; Liu, L. Angew. Chem., Int. Ed. 2018, 57, 11413.
doi: 10.1002/anie.v57.35 |
[45] |
Groendyke, B. J.; Modak, A. S.; Cook, P. J. Org. Chem. 2019, 84, 13073.
doi: 10.1021/acs.joc.9b01979 |
[1] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[2] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[3] | 高艳华, 张银潘, 张妍, 宋涛, 杨勇. 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023, 43(7): 2572-2579. |
[4] | 赵金晓, 魏彤辉, 柯森, 李毅. 可见光催化合成二氟烷基取代的多环吲哚化合物[J]. 有机化学, 2023, 43(3): 1102-1114. |
[5] | 赵瑜, 段玉荣, 史时辉, 白育斌, 黄亮珠, 杨晓军, 张琰图, 冯彬, 张建波, 张秋禹. 可见光促进高价碘(III)试剂参与反应的研究进展[J]. 有机化学, 2023, 43(12): 4106-4140. |
[6] | 陈凤娟, 刘罗, 张子露, 曾伟. 可见光催化有机硅的合成研究进展[J]. 有机化学, 2023, 43(10): 3454-3469. |
[7] | 朱佳洁, 万义, 袁启洋, 魏金莲, 张永强. 可见光/路易斯碱协同催化的三氟甲基取代烯烃脱氟硅化反应研究[J]. 有机化学, 2023, 43(10): 3623-3634. |
[8] | 潘振涛, 刘彤, 马永敏, 颜剑波, 王亚军. 布朗斯特酸/可见光氧化还原接力催化构建喹唑啉(硫)酮[J]. 有机化学, 2022, 42(9): 2823-2831. |
[9] | 李亚东, 吴鹏举, 杨志勇. 可见光催化苯并噁唑与α-酮酸合成芳基苯并噁唑[J]. 有机化学, 2022, 42(6): 1770-1777. |
[10] | 孙天义, 张依凡, 孟远倢, 王怡, 朱琦峰, 姜玉新, 刘石惠. 可见光-铜共催化的糖类区域选择性氧烷基化反应[J]. 有机化学, 2022, 42(5): 1414-1422. |
[11] | 杨惜晖, 高皓炜, 闫甲乐, 史雷. 自由基介导的硅烷Si—H键官能团化研究进展: 一种合成含C—Si键有机硅化合物的有效策略[J]. 有机化学, 2022, 42(12): 4122-4151. |
[12] | 李猛, 赵冬阳, 孙凯. 可见光驱动基团迁移引发的烯烃双官能团化反应[J]. 有机化学, 2022, 42(12): 4152-4168. |
[13] | 赵成军, 白治琴, 何建, 刘强. 吡唑化提高喹喔啉酮敏化效率: 氮杂环丁烷的合成及进一步开环反应[J]. 有机化学, 2022, 42(12): 4300-4314. |
[14] | 季晓霜, 付荣, 王树良, 郝文娟, 姜波. 可见光驱动酚/芳胺联-1,6-烯炔与全卤代甲烷的Kharasch反应[J]. 有机化学, 2022, 42(12): 4282-4291. |
[15] | 何燕, 黄天姿, 史小琴, 陈艳, 吴琼. 异腈参与的光催化反应研究进展[J]. 有机化学, 2022, 42(12): 4220-4246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||