无过渡金属催化的N-苄基-N-叔丁氧羰基酰胺与不饱和醇的酯化反应
收稿日期: 2023-09-20
修回日期: 2023-11-18
网络出版日期: 2023-12-01
基金资助
宁波工程学院(2130011540027)
Esterification of N-Benzyl-N-t-butoxycarbonyl-amides and Unsaturated Alcohol under Transition Metal-Free Conditions
Received date: 2023-09-20
Revised date: 2023-11-18
Online published: 2023-12-01
Supported by
Ningbo University of Technology(2130011540027)
报道了一种无过渡金属催化条件下N-苄基-N-叔丁氧羰基酰胺与不饱和醇的酯化反应. 在催化量叔丁醇锂的作用下, 高活性的N-叔丁氧羰基酰胺作为亲电试剂与不饱和醇发生酯化反应, 以优良的产率得到一系列不饱和酯类产物. 此外, 该反应体系无需昂贵的过渡金属催化, 具有反应条件相对温和等优点, 可进一步应用于天然产物和药物分子的后期修饰.
关键词: 无过渡金属催化; N-苄基-N-叔丁氧羰基酰胺; 不饱和醇; 酯化
万云辉 , 杨福美 , 陈明瀚 , 孙德立 , 叶丹锋 . 无过渡金属催化的N-苄基-N-叔丁氧羰基酰胺与不饱和醇的酯化反应[J]. 有机化学, 2024 , 44(4) : 1293 -1300 . DOI: 10.6023/cjoc202309020
A metal-free catalytic system for the esterification reaction of N-benzyl-N-t-butoxycarbonyl-amides with unsaturated alcohols was reported. With the assistance of catalytic amounts of lithium tert-butoxide, the highly reactive N-t-butoxy- carbonyl-amides were able to act as electrophiles and undergo esterification reactions with unsaturated alcohols to produce a series of unsaturated esters in excellent yields. Furthermore, this metal-free reaction system allowed relatively mild reaction conditions, making it a suitable choice for late-stage modification of natural products and drug molecules.
| [1] | Joksimovi? N.; Jankovi? N.; Davidovi? G.; Bugar?i? Z. Bioorg. Chem. 2020, 105, 104343. |
| [2] | Hajinasiri R. Tetrahedron 2022, 126, 133053. |
| [3] | Prachi R.; Gill M. S. Tetrahedron Lett. 2023, 125, 154621. |
| [4] | Li G.; Szostak M. Nat. Commun. 2018, 9, 4165. |
| [5] | Bolchi C.; Bavo F.; Regazzoni L.; Pallavicini M. Amino Acids 2018, 50, 1261. |
| [6] | Yu J.; Jia J.; Wang X. Chin. J. Org. Chem. 2020, 40, 2778. (in Chinese) |
| [6] | (余接强, 贾俊, 王兴旺, 有机化学, 2020, 40, 2778.) |
| [7] | Zhang J.-Q.; Li N.-K.; Yin S.-J.; Sun B.-B.; Fan W.-T.; Wang X.-W. Adv. Synth. Catal. 2017, 359, 1541. |
| [8] | Luis N. R.; Chung K. K.; Hickey M. R.; Lin Z.; Beutner G. L.; Vosburg D. A. Org. Lett. 2024, 26, 2745. |
| [9] | Villoria-del-álamo B.; Rojas-Buzo S.; García-García P.; Corma A. Chem.-Eur. J. 2021, 27, 4588. |
| [10] | Wang X.; Yang Y.; Zhao Y.; Wang S.; Hu W.; Li J.; Wang Z.; Yang F.; Zhao J. J. Org. Chem. 2020, 85, 6188. |
| [11] | Lima L. M.; Silva B. N. M.; Barbosa G.; Barreiro E. J. Eur. J. Med. Chem. 2020, 208, 112829. |
| [12] | Wang G.; Guo Y.; Wan J. Chin. J. Org. Chem. 2020, 40, 645. (in Chinese) |
| [12] | (王国栋, 郭艳辉, 万结平, 有机化学, 2020, 40, 645.) |
| [13] | Kumar V.; Dhawan S.; Bala R.; Mohite S. B.; Singh P.; Karpo- ormath R. Org. Biomol. Chem. 2022, 20, 6931. |
| [14] | Li X.; Cheng Z.; Liu J.; Zhang Z.; Song S.; Jiao N. Chem. Sci. 2022, 13, 9056. |
| [15] | Zhang B.; Yan J.; Shang Y.; Wang Z. Macromolecules 2018, 51, 1769. |
| [16] | Shi S.; Lalancette R.; Szostak R.; Szostak M. Org. Lett. 2019, 21, 1253. |
| [17] | Hie L.; Fine Nathel N. F.; Shah T. K.; Baker E. L.; Hong X.; Yang Y.-F.; Liu P.; Houk K. N.; Garg N. K. Nature 2015, 524, 79. |
| [18] | Gao P.; Rahman M. M.; Zamalloa A.; Feliciano J.; Szostak M. J. Org. Chem. 2023, 88, 13371. |
| [19] | Meng G.; Shi S.; Lalancette R.; Szostak R.; Szostak M. J. Am. Chem. Soc. 2018, 140, 727. |
| [20] | Li G.; Ji C.-L.; Hong X.; Szostak M. J. Am. Chem. Soc. 2019, 141, 11161. |
| [21] | Li G.; Lei P.; Szostak M. Org. Lett. 2018, 20, 5622. |
| [22] | Wu H.; Guo W.; Daniel S.; Li Y.; Liu C.; Zeng Z. Chem.-Eur. J. 2018, 24, 3444. |
| [23] | Ye D.; Liu Z.; Chen H.; Sessler J. L.; Lei C. Org. Lett. 2019, 21, 6888. |
| [24] | Ye D.; Chen H.; Liu Z.; Lei C. Chin. J. Org. Chem. 2021, 41, 1658. (in Chinese) |
| [24] | (叶丹锋, 陈浩, 刘志园, 雷川虎, 有机化学, 2021, 41, 1658.) |
| [25] | Buchspies J.; Rahman M. M.; Szostak R.; Szostak M. Org. Lett. 2020, 22, 4703. |
| [26] | Szostak R.; Meng G.; Szostak M. J. Org. Chem. 2017, 82, 6373. |
| [27] | Osumi Y.; Liu C.; Szostak M. Org. Biomol. Chem. 2017, 15, 8867. |
| [28] | Rahman M. M.; Szostak M. Org. Lett. 2021, 23, 4818. |
| [29] | Dunetz J. R.; Magano J.; Weisenburger G. A. Org. Proc. Res. Dev. 2016, 20, 140. |
| [30] | Sayes M.; Charette A. B. Green Chem. 2017, 19, 5060. |
| [31] | Li Q.; Dai P.; Tang H.; Zhang M.; Wu J. Chem. Sci. 2022, 13, 9361. |
| [32] | Shi Y.; Sun X.; Cao H.; Bie F.; Ma J.; Liu Z.; Cong X. Chin. J. Org. Chem. 2021, 41, 1658. (in Chinese) |
| [32] | (石义军, 孙馨悦, 曹晗, 别福升, 马杰, 刘哲, 丛兴顺, 有机化学, 2023, 43, 2499.) |
| [33] | Huang C.; Li J.; Wang J.; Zheng Q.; Li Z.; Tu T. Sci. China: Chem. 2021, 64, 66. |
/
| 〈 |
|
〉 |