研究论文

无过渡金属催化的N-苄基-N-叔丁氧羰基酰胺与不饱和醇的酯化反应

  • 万云辉 ,
  • 杨福美 ,
  • 陈明瀚 ,
  • 孙德立 ,
  • 叶丹锋
展开
  • a 宁波工程学院材料与化学工程学院 浙江宁波 315211
    b 上海大学理学院化学系 超分子化学与催化研究中心 上海 200444
    c 上海第二工业大学资源与环境工程学院 上海 201209

收稿日期: 2023-09-20

  修回日期: 2023-11-18

  网络出版日期: 2023-12-01

基金资助

宁波工程学院(2130011540027)

Esterification of N-Benzyl-N-t-butoxycarbonyl-amides and Unsaturated Alcohol under Transition Metal-Free Conditions

  • Yunhui Wan ,
  • Fumei Yang ,
  • Minghan Chen ,
  • Deli Sun ,
  • Danfeng Ye
Expand
  • a College of Material Science and Chemical Engineering, Ningbo University of Technology, Ningbo, Zhejiang 315211
    b Center for Supramolecular Chemistry & Catalysis, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444
    c School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209

Received date: 2023-09-20

  Revised date: 2023-11-18

  Online published: 2023-12-01

Supported by

Ningbo University of Technology(2130011540027)

摘要

报道了一种无过渡金属催化条件下N-苄基-N-叔丁氧羰基酰胺与不饱和醇的酯化反应. 在催化量叔丁醇锂的作用下, 高活性的N-叔丁氧羰基酰胺作为亲电试剂与不饱和醇发生酯化反应, 以优良的产率得到一系列不饱和酯类产物. 此外, 该反应体系无需昂贵的过渡金属催化, 具有反应条件相对温和等优点, 可进一步应用于天然产物和药物分子的后期修饰.

本文引用格式

万云辉 , 杨福美 , 陈明瀚 , 孙德立 , 叶丹锋 . 无过渡金属催化的N-苄基-N-叔丁氧羰基酰胺与不饱和醇的酯化反应[J]. 有机化学, 2024 , 44(4) : 1293 -1300 . DOI: 10.6023/cjoc202309020

Abstract

A metal-free catalytic system for the esterification reaction of N-benzyl-N-t-butoxycarbonyl-amides with unsaturated alcohols was reported. With the assistance of catalytic amounts of lithium tert-butoxide, the highly reactive N-t-butoxy- carbonyl-amides were able to act as electrophiles and undergo esterification reactions with unsaturated alcohols to produce a series of unsaturated esters in excellent yields. Furthermore, this metal-free reaction system allowed relatively mild reaction conditions, making it a suitable choice for late-stage modification of natural products and drug molecules.

参考文献

[1]
Joksimovi? N.; Jankovi? N.; Davidovi? G.; Bugar?i? Z. Bioorg. Chem. 2020, 105, 104343.
[2]
Hajinasiri R. Tetrahedron 2022, 126, 133053.
[3]
Prachi R.; Gill M. S. Tetrahedron Lett. 2023, 125, 154621.
[4]
Li G.; Szostak M. Nat. Commun. 2018, 9, 4165.
[5]
Bolchi C.; Bavo F.; Regazzoni L.; Pallavicini M. Amino Acids 2018, 50, 1261.
[6]
Yu J.; Jia J.; Wang X. Chin. J. Org. Chem. 2020, 40, 2778. (in Chinese)
[6]
(余接强, 贾俊, 王兴旺, 有机化学, 2020, 40, 2778.)
[7]
Zhang J.-Q.; Li N.-K.; Yin S.-J.; Sun B.-B.; Fan W.-T.; Wang X.-W. Adv. Synth. Catal. 2017, 359, 1541.
[8]
Luis N. R.; Chung K. K.; Hickey M. R.; Lin Z.; Beutner G. L.; Vosburg D. A. Org. Lett. 2024, 26, 2745.
[9]
Villoria-del-álamo B.; Rojas-Buzo S.; García-García P.; Corma A. Chem.-Eur. J. 2021, 27, 4588.
[10]
Wang X.; Yang Y.; Zhao Y.; Wang S.; Hu W.; Li J.; Wang Z.; Yang F.; Zhao J. J. Org. Chem. 2020, 85, 6188.
[11]
Lima L. M.; Silva B. N. M.; Barbosa G.; Barreiro E. J. Eur. J. Med. Chem. 2020, 208, 112829.
[12]
Wang G.; Guo Y.; Wan J. Chin. J. Org. Chem. 2020, 40, 645. (in Chinese)
[12]
(王国栋, 郭艳辉, 万结平, 有机化学, 2020, 40, 645.)
[13]
Kumar V.; Dhawan S.; Bala R.; Mohite S. B.; Singh P.; Karpo- ormath R. Org. Biomol. Chem. 2022, 20, 6931.
[14]
Li X.; Cheng Z.; Liu J.; Zhang Z.; Song S.; Jiao N. Chem. Sci. 2022, 13, 9056.
[15]
Zhang B.; Yan J.; Shang Y.; Wang Z. Macromolecules 2018, 51, 1769.
[16]
Shi S.; Lalancette R.; Szostak R.; Szostak M. Org. Lett. 2019, 21, 1253.
[17]
Hie L.; Fine Nathel N. F.; Shah T. K.; Baker E. L.; Hong X.; Yang Y.-F.; Liu P.; Houk K. N.; Garg N. K. Nature 2015, 524, 79.
[18]
Gao P.; Rahman M. M.; Zamalloa A.; Feliciano J.; Szostak M. J. Org. Chem. 2023, 88, 13371.
[19]
Meng G.; Shi S.; Lalancette R.; Szostak R.; Szostak M. J. Am. Chem. Soc. 2018, 140, 727.
[20]
Li G.; Ji C.-L.; Hong X.; Szostak M. J. Am. Chem. Soc. 2019, 141, 11161.
[21]
Li G.; Lei P.; Szostak M. Org. Lett. 2018, 20, 5622.
[22]
Wu H.; Guo W.; Daniel S.; Li Y.; Liu C.; Zeng Z. Chem.-Eur. J. 2018, 24, 3444.
[23]
Ye D.; Liu Z.; Chen H.; Sessler J. L.; Lei C. Org. Lett. 2019, 21, 6888.
[24]
Ye D.; Chen H.; Liu Z.; Lei C. Chin. J. Org. Chem. 2021, 41, 1658. (in Chinese)
[24]
(叶丹锋, 陈浩, 刘志园, 雷川虎, 有机化学, 2021, 41, 1658.)
[25]
Buchspies J.; Rahman M. M.; Szostak R.; Szostak M. Org. Lett. 2020, 22, 4703.
[26]
Szostak R.; Meng G.; Szostak M. J. Org. Chem. 2017, 82, 6373.
[27]
Osumi Y.; Liu C.; Szostak M. Org. Biomol. Chem. 2017, 15, 8867.
[28]
Rahman M. M.; Szostak M. Org. Lett. 2021, 23, 4818.
[29]
Dunetz J. R.; Magano J.; Weisenburger G. A. Org. Proc. Res. Dev. 2016, 20, 140.
[30]
Sayes M.; Charette A. B. Green Chem. 2017, 19, 5060.
[31]
Li Q.; Dai P.; Tang H.; Zhang M.; Wu J. Chem. Sci. 2022, 13, 9361.
[32]
Shi Y.; Sun X.; Cao H.; Bie F.; Ma J.; Liu Z.; Cong X. Chin. J. Org. Chem. 2021, 41, 1658. (in Chinese)
[32]
(石义军, 孙馨悦, 曹晗, 别福升, 马杰, 刘哲, 丛兴顺, 有机化学, 2023, 43, 2499.)
[33]
Huang C.; Li J.; Wang J.; Zheng Q.; Li Z.; Tu T. Sci. China: Chem. 2021, 64, 66.
文章导航

/