研究论文

无催化剂和无添加剂条件下直接合成N-磺酰基胍类化合物

  • 麦尔哈巴?居来提 ,
  • 布鲁努尔?玉散 ,
  • 阿不都热合曼?乌斯曼
展开
  • a 新疆师范大学化学化工学院 乌鲁木齐 830054
    b 新疆储能与光电催化材料重点实验室 乌鲁木齐 830054

收稿日期: 2023-08-20

  修回日期: 2023-11-16

  网络出版日期: 2023-12-08

基金资助

新疆维吾尔自治区自然科学基金(2021D01A115); 新疆储能及光电催化材料重点实验室(XJDX1709-2022-02)

Catalyst- and Additive-Free Direct Synthesis of N-Sulfonyl Guanidines

  • Julaiti Maierhaba ,
  • Yusan Bulunuer ,
  • Wusiman Abudureheman
Expand
  • a School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054
    b Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi 830054

Received date: 2023-08-20

  Revised date: 2023-11-16

  Online published: 2023-12-08

Supported by

Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01A115); Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials(XJDX1709-2022-02)

摘要

报道了一种在无催化剂和无添加剂条件下, 以磺酰胺和碳二亚胺为原料直接合成N-磺酰基胍类化合物的方法. 该方法无需催化剂和添加剂, 操作简单, 官能团兼容性良好, 底物适用范围广, 产率高, 具有较高的原子经济性以及可按比例放大等优点, 为N,N',N''-三取代磺酰胍类化合物的合成提供了一种简单、有效的途径.

本文引用格式

麦尔哈巴?居来提 , 布鲁努尔?玉散 , 阿不都热合曼?乌斯曼 . 无催化剂和无添加剂条件下直接合成N-磺酰基胍类化合物[J]. 有机化学, 2024 , 44(4) : 1276 -1283 . DOI: 10.6023/cjoc202308019

Abstract

A simple and direct method for the synthesis of N-sulfonyl guanidines from sulfonamide and carbodiimides under catalyst- and additive-free conditions was demonstrated. This method has the advantages of no catalyst and additive required, simple operation, good functional group compatibility, a wide range of substrate applications, high yield, high atomic economy, and the ability to scale up proportionally. It provides a facile and efficient strategy for the preparation of N,N',N''-trisub- stituted sulfonyl guanidines.

参考文献

[1]
Guthner T.; Mertschenk B.; Schulz B. Guanidine and Derivatives, In Ullmann's Encyclopedia of Industrial Chemistry, 17th ed., Wiley- VCH, Weinheim, 2006, p. 175.
[2]
Muller G. W.; Walters D. E.; DuBois G. E. J. Med. Chem. 1992, 35, 740.
[3]
Buxbaum A.; Kratzer C.; Graninger W.; Georgopoulos A. J. Antimicrob. Chemother. 2006, 58, 193.
[4]
Maksic M.; Glasovac, Z. WO 2005100306, 2005.
[5]
Taylor J. E.; Bull S. D.; Williams J. M. J. Chem. Soc. Rev. 2012, 41, 2109.
[6]
Ishikawa T.; Kumamoto T. Synthesis 2006, 5, 737.
[7]
Kumamoto T.; Ishikawa I.Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organoctalysts, John Wiley & Sons Ltd, Noida, India, 2009, Chapter 10, p. 295.
[8]
Ishikawa T. Chem. Pharm. Bull. 2010, 58, 1555.
[9]
Berlinck R. G. S. Nat. Prod. Rep. 1999, 16, 339.
[10]
Berlinck R. G, Trindade-Silva A. E.; Santos M. F. Nat. Prod. Rep. 2012, 29, 1382.
[11]
Berlinck R. G.; Romminger S. Nat. Prod. Rep, 2016, 33, 456.
[12]
Selig P. Guanidines as Reagents and Catalysts II, Vol. 51, Springer, Cham, Switzerland, 2017.
[13]
Saczewski F.; Balewski ?. Expert. Opin. Ther. Pat. 2009, 19, 1417.
[14]
Bailey P. J.; Pace S. Coord. Chem. Rev. 2001, 214, 91.
[15]
Coles M. P. Dalton Trans 2006, 985.
[16]
Gomes A. R.; Varela C. L.; Pires A. S.; Tavares-da-Silva E. J.; Roleira F. M. Bioorg. Chem. 2023, 138, 106600.
[17]
Zhang W. X.; Xu L.; Xi Z. Chem. Commun. 2015, 51, 254.
[18]
Katritzky A. R.; Rogovoy B. V. ARKIVOC 2005, 4, 49.
[19]
Alonso-Moreno C.; Antinolo A.; Carrillo-Hermosilla F.; Otero A. Chem. Soc. Rev. 2014, 43, 3406.
[20]
Wang L.; Chi Y.; Zhang W.; Xi Z. Chin. J. Org. Chem. 2018, 38, 1341. (in Chinese)
[20]
(王连军, 迟樾, 张文雄, 席振峰, 有机化学, 2018, 38, 1341.)
[21]
Gao Y.; Carta V.; Pink M.; Smith J. M. J. Am. Chem. Soc. 2021, 143, 5324.
[22]
Karmakar H.; Anga S.; Panda T. K.; Chandrasekhar V. RSC Adv. 2022, 12, 4501.
[23]
Zhang Z.; Chang W. Chin. J. Org. Chem. 2021, 41, 1835. (in Chinese)
[23]
(张震, 畅温旭, 有机化学, 2021, 41, 1835.)
[24]
Yamamoto I.; Tokanou H.; Uemura H. A.; Gotoh H. J. Chem. Soc., Perkin Trans. 1 1977, 1241.
[25]
Tan D.; Mottillo C.; Katsenis A. D.; ?trukil V.; Fri??i? T. Angew. Chem., Int. Ed. 2014, 53, 9321.
[26]
Zhang Z.; Huang B.; Qiao G.; Zhu L.; Xiao F.; Chen F.; Zhang Z. Angew. Chem., Int. Ed. 2017, 56, 4320.
[27]
Qiao G.; Zhang Z.; Huang B.; Zhu L.; Xiao F.; Zhang Z. Synthesis 2018, 50, 330.
[28]
Bossio R.; Marcaccini S.; Pepino R. Tetrahedron Lett. 1995, 36, 2325.
[29]
Gu Z. Y.; Liu Y.; Wang F.; Bao X.; Wang S. Y.; Ji S. J. ACS Catal. 2017, 7, 3893.
[30]
Fang Y.; Yang J. M.; Zhang R.; Wang S. Y.; Ji S. J. Org. Chem. Front. 2019, 6, 3383.
[31]
Hazarika D.; Borah A. J.; Phukan P. Chem. Commun. 2019, 55, 1418.
[32]
Mishra D.; Borah A. J.; Phukan P.; Hazarika D.; Phukan P. Chem. Commun. 2020, 56, 8408.
[33]
Mishra D.; Rajkhowa S.; Phukan P. iScience 2023, 26, 107258.
[34]
Rouzi A.; Hudabaierdi R.; Wusiman A. Tetrahedron 2018, 74, 2475.
[35]
Liu A. R.; Zhang L.; Li J.; Wusiman A. RSC Adv. 2021, 25, 15161.
[36]
Holthausen M. H.; Colussi M.; Stephan D. W. Chem.-Eur. J. 2015, 21, 2193.
[37]
Egg H.; Gnauer U.; Hambrusch B. Arch. Pharm. 1987, 320, 673.
文章导航

/