烯丙基芳香化合物的电化学选择性氧化酯化
收稿日期: 2023-09-19
修回日期: 2023-11-29
网络出版日期: 2023-12-08
基金资助
国家自然科学基金(22071105); 国家自然科学基金(22031008)
Chemoselective Electro-oxidation of Allyl Arene to Ester
Received date: 2023-09-19
Revised date: 2023-11-29
Online published: 2023-12-08
Supported by
National Natural Science Foundation of China(22071105); National Natural Science Foundation of China(22031008)
李梦帆 , 程旭 . 烯丙基芳香化合物的电化学选择性氧化酯化[J]. 有机化学, 2024 , 44(3) : 1005 -1012 . DOI: 10.6023/cjoc202309019
An electrochemical C—H and C—C bond esterification reaction with allyl arene as a substrate is reported. This oxidation takes place selectively at the benzyl+allyl C—H site instead of other benzylic C—H groups. Since the reaction does not require acid/base catalysis for esterification, tertiary alcohol is suitable for the synthesis of the corresponding ester. In addition, side reactions such as transesterification can be avoided with this neutral protocol.
Key words: allyl; benzyl; electrochemistry; esterification
| [1] | (a) Liang Y.-F.; Jiao N. Acc. Chem. Res. 2017, 50, 1640. |
| [1] | (b) White M. C.; Zhao J. J. Am. Chem. Soc. 2018, 140, 13988. |
| [1] | (c) Dalton T.; Faber T.; Glorius F. ACS Cent. Sci. 2021, 7, 245. |
| [2] | (a) Shi S.-H.; Liang Y.; Jiao N. Chem. Rev. 2021, 121, 485. |
| [2] | (b) Cheng X.; Lei A.; Mei T.-S.; Xu H.-C.; Xu K.; Zeng C. CCS Chem. 2022, 4, 1120. |
| [2] | (c) Li M.; Cheng X. Isr. J. Chem. 2023, n/a, e202300067. |
| [2] | (d) Zhang P.; Wang T.; Gong J. CCS Chem. 2023, 5, 1028. |
| [3] | (a) Tang S.; Liu Y.; Lei A. Chem 2018, 4, 27. |
| [3] | (b) Meyer T. H.; Finger L. H.; Gandeepan P.; Ackermann L. Trends Chem. 2019, 1, 63. |
| [3] | (c) Yuan Y.; Lei A. Acc. Chem. Res. 2019, 52, 3309. |
| [3] | (d) Qiu Y.; Zhu C.; Stangier M.; Struwe J.; Ackermann L. CCS Chem. 2021, 3, 1529. |
| [4] | (a) Marko J. A.; Durgham A.; Bretz S. L.; Liu W. Chem. Commun. 2019, 55, 937. |
| [4] | (b) Sun Y.; Li X.; Yang M.; Xu W.; Xie J.; Ding M. Green Chem. 2020, 22, 7543. |
| [4] | (c) Atkins A. P.; Rowett A. C.; Heard D. M.; Tate J. A.; Lennox A. J. J. Org. Lett. 2022, 24, 5105. |
| [4] | (d) Hoque M. A.; Twilton J.; Zhu J.; Graaf M. D.; Harper K. C.; Tuca E.; DiLabio G. A.; Stahl S. S. J. Am. Chem. Soc. 2022, 144, 15295. |
| [4] | (e) Chen T.-S.; Long H.; Gao Y.; Xu H.-C. Angew. Chem., Int. Ed. 2023, e202310138. |
| [5] | Seidler J.; Strugatchi J.; G?rtner T.; Waldvogel S. R. MRS Energy Sustainability 2021, 7, 42. |
| [6] | (a) Horn E. J.; Rosen B. R.; Chen Y.; Tang J.; Chen K.; Eastgate M. D.; Baran P. S. Nature 2016, 533, 77. |
| [6] | (b) Kazerouni A. M.; McKoy Q. A.; Blakey S. B. Chem. Commun. 2020, 56, 13287. |
| [7] | Yu X.; Zhao Z.; Zhu L.; Tan S.; Fu W.; Wang L.; An Y. Mol. Catal. 2022, 519, 112152. |
| [8] | (a) Martinez-Erro S.; Sanz-Marco A.; Bermejo Gómez A.; Vázquez-Romero A.; Ahlquist M. S. G.; Martín-Matute B. J. Am. Chem. Soc. 2016, 138, 13408. |
| [8] | (b) Hayashi R.; Ando K.; Udagawa T.; Sai M. Adv. Synth. Catal. 2023, 365, 826. |
| [8] | (c) Yayla H. G.; Wang H.; Tarantino K. T.; Orbe H. S.; Knowles R. R. J. Am. Chem. Soc. 2016, 138, 10794. |
| [9] | (a) Kang J.-C.; Tu Y.-Q.; Dong J.-W.; Chen C.; Zhou J.; Ding T.-M.; Zai J.-T.; Chen Z.-M.; Zhang S.-Y. Org. Lett. 2019, 21, 2536. |
| [9] | (b) Chen C.; Kang J.-C.; Mao C.; Dong J.-W.; Xie Y.-Y.; Ding T.-M.; Tu Y.-Q.; Chen Z.-M.; Zhang S.-Y. Green Chem. 2019, 21, 4014. |
/
| 〈 |
|
〉 |