研究论文

烯丙基芳香化合物的电化学选择性氧化酯化

  • 李梦帆 ,
  • 程旭
展开
  • 南京大学化学化工学院 南京 210023

收稿日期: 2023-09-19

  修回日期: 2023-11-29

  网络出版日期: 2023-12-08

基金资助

国家自然科学基金(22071105); 国家自然科学基金(22031008)

Chemoselective Electro-oxidation of Allyl Arene to Ester

  • Mengfan Li ,
  • Xu Cheng
Expand
  • School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023

Received date: 2023-09-19

  Revised date: 2023-11-29

  Online published: 2023-12-08

Supported by

National Natural Science Foundation of China(22071105); National Natural Science Foundation of China(22031008)

摘要

报道了烯丙基芳基化合物的电化学氧化酯化方法, 通过同时活化苄位烯丙位的C—H和C—C键, 合成了一系列苯甲酸酯类化合物. 本反应展现了良好的化学选择性, 优先在苄位烯丙位发生氧化, 而其它的苄位C—H键则保持稳定. 该反应在中性条件下进行, 无需酸碱添加剂, 可以适用叔醇酯的构建, 同时避免酯和醇存在下的转移酯化副反应.

关键词: 烯丙基; 苄基; 电化学; 酯化

本文引用格式

李梦帆 , 程旭 . 烯丙基芳香化合物的电化学选择性氧化酯化[J]. 有机化学, 2024 , 44(3) : 1005 -1012 . DOI: 10.6023/cjoc202309019

Abstract

An electrochemical C—H and C—C bond esterification reaction with allyl arene as a substrate is reported. This oxidation takes place selectively at the benzylallyl C—H site instead of other benzylic C—H groups. Since the reaction does not require acid/base catalysis for esterification, tertiary alcohol is suitable for the synthesis of the corresponding ester. In addition, side reactions such as transesterification can be avoided with this neutral protocol.

参考文献

[1]
(a) Liang Y.-F.; Jiao N. Acc. Chem. Res. 2017, 50, 1640.
[1]
(b) White M. C.; Zhao J. J. Am. Chem. Soc. 2018, 140, 13988.
[1]
(c) Dalton T.; Faber T.; Glorius F. ACS Cent. Sci. 2021, 7, 245.
[2]
(a) Shi S.-H.; Liang Y.; Jiao N. Chem. Rev. 2021, 121, 485.
[2]
(b) Cheng X.; Lei A.; Mei T.-S.; Xu H.-C.; Xu K.; Zeng C. CCS Chem. 2022, 4, 1120.
[2]
(c) Li M.; Cheng X. Isr. J. Chem. 2023, n/a, e202300067.
[2]
(d) Zhang P.; Wang T.; Gong J. CCS Chem. 2023, 5, 1028.
[3]
(a) Tang S.; Liu Y.; Lei A. Chem 2018, 4, 27.
[3]
(b) Meyer T. H.; Finger L. H.; Gandeepan P.; Ackermann L. Trends Chem. 2019, 1, 63.
[3]
(c) Yuan Y.; Lei A. Acc. Chem. Res. 2019, 52, 3309.
[3]
(d) Qiu Y.; Zhu C.; Stangier M.; Struwe J.; Ackermann L. CCS Chem. 2021, 3, 1529.
[4]
(a) Marko J. A.; Durgham A.; Bretz S. L.; Liu W. Chem. Commun. 2019, 55, 937.
[4]
(b) Sun Y.; Li X.; Yang M.; Xu W.; Xie J.; Ding M. Green Chem. 2020, 22, 7543.
[4]
(c) Atkins A. P.; Rowett A. C.; Heard D. M.; Tate J. A.; Lennox A. J. J. Org. Lett. 2022, 24, 5105.
[4]
(d) Hoque M. A.; Twilton J.; Zhu J.; Graaf M. D.; Harper K. C.; Tuca E.; DiLabio G. A.; Stahl S. S. J. Am. Chem. Soc. 2022, 144, 15295.
[4]
(e) Chen T.-S.; Long H.; Gao Y.; Xu H.-C. Angew. Chem., Int. Ed. 2023, e202310138.
[5]
Seidler J.; Strugatchi J.; G?rtner T.; Waldvogel S. R. MRS Energy Sustainability 2021, 7, 42.
[6]
(a) Horn E. J.; Rosen B. R.; Chen Y.; Tang J.; Chen K.; Eastgate M. D.; Baran P. S. Nature 2016, 533, 77.
[6]
(b) Kazerouni A. M.; McKoy Q. A.; Blakey S. B. Chem. Commun. 2020, 56, 13287.
[7]
Yu X.; Zhao Z.; Zhu L.; Tan S.; Fu W.; Wang L.; An Y. Mol. Catal. 2022, 519, 112152.
[8]
(a) Martinez-Erro S.; Sanz-Marco A.; Bermejo Gómez A.; Vázquez-Romero A.; Ahlquist M. S. G.; Martín-Matute B. J. Am. Chem. Soc. 2016, 138, 13408.
[8]
(b) Hayashi R.; Ando K.; Udagawa T.; Sai M. Adv. Synth. Catal. 2023, 365, 826.
[8]
(c) Yayla H. G.; Wang H.; Tarantino K. T.; Orbe H. S.; Knowles R. R. J. Am. Chem. Soc. 2016, 138, 10794.
[9]
(a) Kang J.-C.; Tu Y.-Q.; Dong J.-W.; Chen C.; Zhou J.; Ding T.-M.; Zai J.-T.; Chen Z.-M.; Zhang S.-Y. Org. Lett. 2019, 21, 2536.
[9]
(b) Chen C.; Kang J.-C.; Mao C.; Dong J.-W.; Xie Y.-Y.; Ding T.-M.; Tu Y.-Q.; Chen Z.-M.; Zhang S.-Y. Green Chem. 2019, 21, 4014.
文章导航

/