综述与进展

过渡金属催化C—S键活化与转化研究进展

  • 郭凯杰 ,
  • 符昕姝 ,
  • 李靖 ,
  • 陈艳 ,
  • 胡美丽 ,
  • 堵锡华 ,
  • 谢屿阳 ,
  • 何燕
展开
  • a 徐州工程学院材料与化学工程学院 江苏徐州 221018
    b 徐州医科大学江苏省新药研究与临床药学重点实验室 江苏徐州 221004

收稿日期: 2023-09-11

  修回日期: 2023-12-06

  网络出版日期: 2023-12-18

基金资助

徐州市科技计划(KC21286); 2022年徐州工程学院“大创计划”(xcx2022013)

Recent Advances in Transition-Metal-Catalyzed C—S Bond Activation and Transformations

  • Kaijie Guo ,
  • Xinshu Fu ,
  • Jing Li ,
  • Yan Chen ,
  • Meili Hu ,
  • Xihua Du ,
  • Yuyang Xie ,
  • Yan He
Expand
  • a School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018
    b Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004

Received date: 2023-09-11

  Revised date: 2023-12-06

  Online published: 2023-12-18

Supported by

Scientific Research Project of Xuzhou(KC21286); Xuzhou University of Technology “Great Innovation Plan” Project in 2022(xcx2022013)

摘要

C—S键的活化, 对于药物分子、高性能聚合物和复合材料的制备以及生物医学、环境保护等领域具有重要作用, 过渡金属催化C—S键的活化与转化更是具有广泛的应用前景. 根据有机硫化物中碳原子的杂化类型进行分类, 综述了近十年来过渡金属催化C(sp)/C(sp2)/C(sp3)—S键活化与转化的研究进展, 采用不同的过渡金属催化剂, 着重讨论了底物适用性和反应机理, 并对该领域存在的挑战以及未来发展趋势进行了讨论和展望.

本文引用格式

郭凯杰 , 符昕姝 , 李靖 , 陈艳 , 胡美丽 , 堵锡华 , 谢屿阳 , 何燕 . 过渡金属催化C—S键活化与转化研究进展[J]. 有机化学, 2024 , 44(4) : 1124 -1150 . DOI: 10.6023/cjoc202309012

Abstract

The activation of C—S bond plays a crucial role in the preparation of drug molecules, high-performance polymers and composite materials, as well as in biomedical, environmental protection and other fields. Transition-metal-catalyzed C—S bond activation and transformations have a wide range of application prospects. Herein, the recent advances in transition-metal-catalyzed C(sp)/C(sp2)/C(sp3)—S bond activation and transformations are summarized according to the hybridization types of carbon atoms in organosulfur compounds. Various transition metal catalysts are utilized. The substrate applicability and reaction mechanisms are emphatically discussed. Finally, the challenges and future development trends of this research field are discussed and prospected.

参考文献

[1]
(a) W?chtersh?user G. Trans. R. Soc. B 2006, 361, 1787.
[1]
(b) Harpp D. N.; Vines S. M.; Montillier J. P.; Chan T. H. J. Org. Chem. 1976, 41, 3987.
[1]
(c) Grochowski M. R.; Li T.; Brennessel W. W.; Jones W. D. J. Am. Chem. Soc. 2010, 132, 12412.
[2]
(a) Boyd D. A. Angew. Chem., Int. Ed. 2016, 55, 15486.
[2]
(b) Liu J.; Yang J.; Yang Q.; Wang G.; Li Y. Adv. Funct. Mater. 2005, 15, 1297.
[2]
(c) Dondoni A. Angew. Chem., Int. Ed. 2008, 120, 9133.
[3]
(a) Natarajan A.; Guo Y.; Harbinski F.; Fan Y.-H.; Chen H.; Luus L.; Diercks J.; Aktas H.; Chorev M.; Halperin J. A. J. Med. Chem. 2004, 47, 4979.
[3]
(b) Cole D. C.; Lennox W. J.; Lombardi S.; Ellingboe J. W.; Bernotas R. C.; Tawa G. J.; Mazandarani H.; Smith D. L.; Zhang G.; Coupet J.; Schechter L. E. J. Med. Chem. 2005, 48, 353.
[3]
(c) Banerjee M.; Poddar A.; Mitra G.; Surolia A.; Owa T.; Bhattacharyya B. J. Med. Chem. 2005, 48, 547.
[3]
(d) Feng E.; Huang H.; Zhou Y.; Ye D.; Jiang H.; Liu H. J. Comb. Chem. 2010, 12, 422.
[3]
(e) Gao G.-Y.; Colvin A. J.; Chen Y.; Zhang X. P. J. Org. Chem. 2004, 69, 8886.
[3]
(f) Inamoto K.; Hasegawa C.; Hiroya K.; Doi T. Org. Lett. 2008, 10, 5147.
[3]
(g) Jegelka M.; Plietker B. Org. Lett. 2009, 11, 3462.
[3]
(h) Niu P.; Kang J.; Tian X.; Song L.; Liu H.; Wu J.; Yu W.; Chang J. J. Org. Chem. 2015, 80, 1018.
[4]
(a) Fang R.; Xu J.; Wang D.-W. Energy Environ. Sci. 2020, 13, 432.
[4]
(b) Shi F.; Yu J.; Chen C.; Lau S. P.; Lv W.; Xu Z.-L. J. Mater. Chem. A 2022, 10, 19412.
[4]
(c) Li M.; Chen H.; Wang Y.; Chen X.; Wu J.; Su J.; Wang M.; Li X.; Li C.; Ma L.; Li X.; Chen Y. J. Mater. Chem. A 2023, 11, 11721.
[5]
(a) Luque R. Curr. Org. Synth. 2011, 8, 1.
[5]
(b) Ornellas S. D.; Storr T. E.; Williams T. J.; Baumann C. G.; Fairlamb I. J. S. Curr. Org. Synth. 2011, 8, 79.
[5]
(c) Wang L.; He W.; Yu Z. Chem. Soc. Rev. 2013, 42, 599.
[5]
(d) Modha S. G.; Mehta V. P.; Eycken E. V. Chem. Soc. Rev. 2013, 42, 5042.
[5]
(e) Lou J.; Wang Q.; Wu P.; Wang H.; Zhou Y. G.; Yu Z. Chem. Soc. Rev. 2020, 49, 4307.
[5]
(f) Huang S.; Wang M.; Jiang X. Chem. Soc. Rev. 2022, 51, 8351.
[5]
(g) Otsuka S.; Nogi K.; Yorimitsu H. Top. Curr. Chem. 2018, 376, 13.
[6]
(a) Li Y.; Wang H.; Wang Z.; Alhumade H.; Huang Z.; Lei A. Chem. Sci. 2023, 14, 372.
[6]
(b) Tyagi A.; Taneja N.; Khan J.; Hazra C. K. Adv. Synth. Catal. 2023, 365, 1247.
[6]
(c) Liang D.; Wang M.; Bekturhun B.; Xiong B.; Liu Q. Adv. Synth. Catal. 2010, 352, 1593.
[6]
(d) Liu Y.; Wang M.; Yuan H.; Liu Q. Adv. Synth. Catal. 2010, 352, 884.
[6]
(e) Liu Y.; Liu J.; Wang M.; Liu J.; Liu Q. Adv. Synth. Catal. 2012, 354, 2678.
[6]
(f) Yu H.; Yu Z. Angew. Chem. 2009, 121, 2973.
[6]
(g) Dong Y.; Wang M.; Liu J.; Ma W.; Liu Q. Chem. Commun. 2011, 47, 7380.
[6]
(h) Verma R. K.; Verma G. K.; Shukla G.; Singh M. S. RSC Adv. 2012, 2, 2413.
[6]
(i) Jin W.; Du W.; Yang Q.; Yu H.; Chen J.; Yu Z. Org. Lett. 2011, 13, 4272.
[7]
Yang K.; Li Q.; Li Z.; Sun X. Chem. Commun. 2023, 59, 5343.
[8]
Liebeskind L. S.; Srogl J.; Savarin C.; Polanco C. Pure Appl. Chem. 2002, 74, 115.
[9]
Iwasaki M.; Fujino D.; Wada T.; Kondoh A.; Yorimitsu H.; Oshima K. Chem. Asian J. 2011, 6, 3190.
[10]
Arisawa M.; Igarashi Y.; Tagami Y.; Yamaguchi M.; Kabuto C. Tetrahedron Lett. 2011, 52, 920
[11]
Shibata T.; Mitake A.; Akiyamac Y.; Stephen K. K. Chem. Commun. 2017, 53, 9016.
[12]
Beletskaya I. P.; Ananikov V. P. Chem. Rev. 2022, 122, 16110.
[13]
(a) Beletskaya I. P.; Alonso F.; Tyurin V. Coord Chem. Rev. 2019, 385, 137.
[13]
(b) Buchspies J.; Szostak M. Catalysts 2019, 9, 53.
[13]
(c) Das P.; Linert W. Coord. Chem. Rev. 2016, 311, 1.
[13]
(d) Han F.-S. Chem. Soc. Rev. 2013, 42, 5270.
[13]
(e) Hooshmand S. E.; Heidari B.; Sedghi R.; Varma R. S. Green chem. 2019, 21, 381.
[13]
(f) Lennox A. J. J.; Lloyd-Jones G. C. Chem. Soc. Rev. 2014, 43, 412.
[13]
(g) Lamblin M.; Nassar-Hardy L.; Hierso J.-C.; Fouquet E.; Felpin F.-X. Adv. Synth. Catal. 2010, 352, 33.
[14]
Liu B.; Zheng G.; Liu X.; Xu C.; Liu J.; Wang M. Chem. Commun. 2013, 49, 2201.
[15]
Liu J.; Liu Y.; Du W.; Dong Y.; Liu J.; Wang M. J. Org. Chem. 2013, 78, 7293.
[16]
Dong Y.; Liu B.; Chen P.; Liu Q.; Wang M. Angew. Chem. 2014, 126, 3510.
[17]
Otsuka S.; Fujino D.; Murakami K.; Yorimitsu H.; Osuka A. Chem. Eur. J. 2014, 20, 13146.
[18]
Vasu D.; Yorimitsu H.; Osuka A. Synthesis 2015, 47, 3286.
[19]
Liu B.; Chang J.; Zheng G.; Song X.; Wang M. Eur. J. Org. Chem. 2015, 4611.
[20]
Chang J.; Liu B.; Yang Y.; Wang M. Org. Lett. 2016, 18, 3984.
[21]
Wang S.-M.; Wang X.-Y.; Qin H.-L.; Zhang C.-P. Chem. Eur. J. 2016, 22, 6542.
[22]
Iwasaki M.; Topolov?an N.; Hu H.; Nishimura Y.; Gagnot G.; Na nakorn R.; Yuvacharaskul R.; Nakajima K.; Nishihara Y. Org. Lett. 2016, 18, 1642.
[23]
Wang Q.; Liu Z.; Lou J.; Yu Z. Org. Lett. 2018, 20, 6007.
[24]
Otsuka S.; Nogi K.; Yorimitsu H. Angew. Chem., Int. Ed. 2018, 57, 6653.
[25]
Minami H.; Nogi K.; Yorimitsu H. Org. Lett. 2019, 21, 2518.
[26]
Uno D.; Nogi K.; Yorimitsu H. Org. Lett. 2019, 21, 8295.
[27]
Xu J.-X.; Zhao F.; Wu X.-F. Org. Biomol. Chem. 2020, 18, 9796.
[28]
Delcaillau T.; Schmitt H. L.; Boehm P.; Falk E.; Morandi B. ACS Catal. 2022, 12, 6081.
[29]
Yang S.; Yu X.; Poater A.; Cavallo L.; Cazin C. S. J.; Nolan S. P.; Szostak M. Org. Lett. 2022, 24, 9210.
[30]
Mond J.; Langer C.; Quincke F. J. Chem. Soc., Trans. 1890, 57, 749.
[31]
Wilke G. Angew. Chem., Int. Ed. 1988, 27, 185.
[32]
Stephan Enthaler, C. I. S. M. W. Catal. Lett. 2013, 143, 424.
[33]
Yamamoto K.; Otsuka S.; Nogi K.; Yorimitsu H. ACS Catal. 2017, 7, 7623.
[34]
Yamada K.; Yanagi T.; Yorimitsu H. Org. Lett. 2020, 22, 9712.
[35]
Inami T.; Kurahashi T.; Matsubara S. Synlett 2021, 32, 1948.
[36]
Shibata T.; Sekine A.; Akino M.; Ito M. Chem. Commun., 2021, 57, 9048.
[37]
Mai W.-P.; Sui H.-D.; Lv M.-X.; Lu K. J. Chem. Res. 2021, 45, 890.
[38]
Pan F.; Wang H.; Shen P.-X.; Zhao J.; Shi Z.-J. Chem. Sci. 2013, 4, 1573.
[39]
Uetake Y.; Niwa T.; Hosoya T. Org. Lett. 2016, 18, 2758.
[40]
(a) Sherry B. D.; Fürstner A. Acc. Chem. Res. 2008, 41, 1500.
[40]
(b) Czaplik W. M.; Mayer M.; Cvengros, Wangelin, J.; A. Jacobi von. ChemSusChem 2009, 2, 396.
[40]
(c) Piontek A.; Bisz E.; Szostak M. Angew. Chem., Int. Ed. 2018, 57, 11116.
[41]
Blanksby S. J.; Ellison G. B. Acc. Chem. Res. 2003, 36, 255.
[42]
Lou J.; Wang Q.; Wu K.; Wu P.; Yu Z. Org. Lett. 2017, 19, 3287.
[43]
Chen S.; Guo X.; Hou H.; Geng S.; Liu Z.; He Y.; Xue X.-S.; Feng Z. Angew. Chem., Int. Ed. 2023, 62, e202303470.
[44]
Zhang Y.; Li T.-J.; Lv L.; Liu J.-Q.; Wang X.-S. J. Heterocyclic. Chem. 2022, 59, 67.
[45]
Tian Z.-Y.; Wang S.-M.; Jia S.-J.; Song H.-X.; Zhang C.-P. Org. Lett. 2017, 19, 5454.
[46]
Li Y.; Wang H.; Wang Z.; Alhumade H.; Huang Z.; Lei A. Chem. Sci. 2023, 14, 372.
[47]
Nambo M.; Crudden C. M. Angew. Chem., Int. Ed. 2014, 53, 742.
[48]
Simko? D. C.; Elekes P.; Pa?zma?ndi V.; Nova?k Z. Org. Lett. 2018, 20, 676.
[49]
Li Y.; Bao G.; Wu X.-F. Chem. Sci. 2020, 11, 2187.
[50]
Tian Q.; Xu S.; Zhang C.; Liu X.; Wu X.; Li Y. J.Org. Chem. 2021, 86, 8797.
[51]
Yu H.; Zhao L.; Diao Q.; Li T.; Liao P.; Hou D.; Xin G. Synlett 2017, 28, 1828.
[52]
Zhang X.-S.; Zhang Y.-F.; Li Z.-W.; Luo F.-X.; Shi Z.-J. Angew. Chem., Int. Ed. 2015, 54, 5478.
[53]
Ming X.-X.; Wu S.; Tian Z.-Y.; Song J.-W.; Zhang C.-P. Org. Lett. 2021, 23, 6795.
文章导航

/