过渡金属催化C—S键活化与转化研究进展
收稿日期: 2023-09-11
修回日期: 2023-12-06
网络出版日期: 2023-12-18
基金资助
徐州市科技计划(KC21286); 2022年徐州工程学院“大创计划”(xcx2022013)
Recent Advances in Transition-Metal-Catalyzed C—S Bond Activation and Transformations
Received date: 2023-09-11
Revised date: 2023-12-06
Online published: 2023-12-18
Supported by
Scientific Research Project of Xuzhou(KC21286); Xuzhou University of Technology “Great Innovation Plan” Project in 2022(xcx2022013)
郭凯杰 , 符昕姝 , 李靖 , 陈艳 , 胡美丽 , 堵锡华 , 谢屿阳 , 何燕 . 过渡金属催化C—S键活化与转化研究进展[J]. 有机化学, 2024 , 44(4) : 1124 -1150 . DOI: 10.6023/cjoc202309012
The activation of C—S bond plays a crucial role in the preparation of drug molecules, high-performance polymers and composite materials, as well as in biomedical, environmental protection and other fields. Transition-metal-catalyzed C—S bond activation and transformations have a wide range of application prospects. Herein, the recent advances in transition-metal-catalyzed C(sp)/C(sp2)/C(sp3)—S bond activation and transformations are summarized according to the hybridization types of carbon atoms in organosulfur compounds. Various transition metal catalysts are utilized. The substrate applicability and reaction mechanisms are emphatically discussed. Finally, the challenges and future development trends of this research field are discussed and prospected.
| [1] | (a) W?chtersh?user G. Trans. R. Soc. B 2006, 361, 1787. |
| [1] | (b) Harpp D. N.; Vines S. M.; Montillier J. P.; Chan T. H. J. Org. Chem. 1976, 41, 3987. |
| [1] | (c) Grochowski M. R.; Li T.; Brennessel W. W.; Jones W. D. J. Am. Chem. Soc. 2010, 132, 12412. |
| [2] | (a) Boyd D. A. Angew. Chem., Int. Ed. 2016, 55, 15486. |
| [2] | (b) Liu J.; Yang J.; Yang Q.; Wang G.; Li Y. Adv. Funct. Mater. 2005, 15, 1297. |
| [2] | (c) Dondoni A. Angew. Chem., Int. Ed. 2008, 120, 9133. |
| [3] | (a) Natarajan A.; Guo Y.; Harbinski F.; Fan Y.-H.; Chen H.; Luus L.; Diercks J.; Aktas H.; Chorev M.; Halperin J. A. J. Med. Chem. 2004, 47, 4979. |
| [3] | (b) Cole D. C.; Lennox W. J.; Lombardi S.; Ellingboe J. W.; Bernotas R. C.; Tawa G. J.; Mazandarani H.; Smith D. L.; Zhang G.; Coupet J.; Schechter L. E. J. Med. Chem. 2005, 48, 353. |
| [3] | (c) Banerjee M.; Poddar A.; Mitra G.; Surolia A.; Owa T.; Bhattacharyya B. J. Med. Chem. 2005, 48, 547. |
| [3] | (d) Feng E.; Huang H.; Zhou Y.; Ye D.; Jiang H.; Liu H. J. Comb. Chem. 2010, 12, 422. |
| [3] | (e) Gao G.-Y.; Colvin A. J.; Chen Y.; Zhang X. P. J. Org. Chem. 2004, 69, 8886. |
| [3] | (f) Inamoto K.; Hasegawa C.; Hiroya K.; Doi T. Org. Lett. 2008, 10, 5147. |
| [3] | (g) Jegelka M.; Plietker B. Org. Lett. 2009, 11, 3462. |
| [3] | (h) Niu P.; Kang J.; Tian X.; Song L.; Liu H.; Wu J.; Yu W.; Chang J. J. Org. Chem. 2015, 80, 1018. |
| [4] | (a) Fang R.; Xu J.; Wang D.-W. Energy Environ. Sci. 2020, 13, 432. |
| [4] | (b) Shi F.; Yu J.; Chen C.; Lau S. P.; Lv W.; Xu Z.-L. J. Mater. Chem. A 2022, 10, 19412. |
| [4] | (c) Li M.; Chen H.; Wang Y.; Chen X.; Wu J.; Su J.; Wang M.; Li X.; Li C.; Ma L.; Li X.; Chen Y. J. Mater. Chem. A 2023, 11, 11721. |
| [5] | (a) Luque R. Curr. Org. Synth. 2011, 8, 1. |
| [5] | (b) Ornellas S. D.; Storr T. E.; Williams T. J.; Baumann C. G.; Fairlamb I. J. S. Curr. Org. Synth. 2011, 8, 79. |
| [5] | (c) Wang L.; He W.; Yu Z. Chem. Soc. Rev. 2013, 42, 599. |
| [5] | (d) Modha S. G.; Mehta V. P.; Eycken E. V. Chem. Soc. Rev. 2013, 42, 5042. |
| [5] | (e) Lou J.; Wang Q.; Wu P.; Wang H.; Zhou Y. G.; Yu Z. Chem. Soc. Rev. 2020, 49, 4307. |
| [5] | (f) Huang S.; Wang M.; Jiang X. Chem. Soc. Rev. 2022, 51, 8351. |
| [5] | (g) Otsuka S.; Nogi K.; Yorimitsu H. Top. Curr. Chem. 2018, 376, 13. |
| [6] | (a) Li Y.; Wang H.; Wang Z.; Alhumade H.; Huang Z.; Lei A. Chem. Sci. 2023, 14, 372. |
| [6] | (b) Tyagi A.; Taneja N.; Khan J.; Hazra C. K. Adv. Synth. Catal. 2023, 365, 1247. |
| [6] | (c) Liang D.; Wang M.; Bekturhun B.; Xiong B.; Liu Q. Adv. Synth. Catal. 2010, 352, 1593. |
| [6] | (d) Liu Y.; Wang M.; Yuan H.; Liu Q. Adv. Synth. Catal. 2010, 352, 884. |
| [6] | (e) Liu Y.; Liu J.; Wang M.; Liu J.; Liu Q. Adv. Synth. Catal. 2012, 354, 2678. |
| [6] | (f) Yu H.; Yu Z. Angew. Chem. 2009, 121, 2973. |
| [6] | (g) Dong Y.; Wang M.; Liu J.; Ma W.; Liu Q. Chem. Commun. 2011, 47, 7380. |
| [6] | (h) Verma R. K.; Verma G. K.; Shukla G.; Singh M. S. RSC Adv. 2012, 2, 2413. |
| [6] | (i) Jin W.; Du W.; Yang Q.; Yu H.; Chen J.; Yu Z. Org. Lett. 2011, 13, 4272. |
| [7] | Yang K.; Li Q.; Li Z.; Sun X. Chem. Commun. 2023, 59, 5343. |
| [8] | Liebeskind L. S.; Srogl J.; Savarin C.; Polanco C. Pure Appl. Chem. 2002, 74, 115. |
| [9] | Iwasaki M.; Fujino D.; Wada T.; Kondoh A.; Yorimitsu H.; Oshima K. Chem. Asian J. 2011, 6, 3190. |
| [10] | Arisawa M.; Igarashi Y.; Tagami Y.; Yamaguchi M.; Kabuto C. Tetrahedron Lett. 2011, 52, 920 |
| [11] | Shibata T.; Mitake A.; Akiyamac Y.; Stephen K. K. Chem. Commun. 2017, 53, 9016. |
| [12] | Beletskaya I. P.; Ananikov V. P. Chem. Rev. 2022, 122, 16110. |
| [13] | (a) Beletskaya I. P.; Alonso F.; Tyurin V. Coord Chem. Rev. 2019, 385, 137. |
| [13] | (b) Buchspies J.; Szostak M. Catalysts 2019, 9, 53. |
| [13] | (c) Das P.; Linert W. Coord. Chem. Rev. 2016, 311, 1. |
| [13] | (d) Han F.-S. Chem. Soc. Rev. 2013, 42, 5270. |
| [13] | (e) Hooshmand S. E.; Heidari B.; Sedghi R.; Varma R. S. Green chem. 2019, 21, 381. |
| [13] | (f) Lennox A. J. J.; Lloyd-Jones G. C. Chem. Soc. Rev. 2014, 43, 412. |
| [13] | (g) Lamblin M.; Nassar-Hardy L.; Hierso J.-C.; Fouquet E.; Felpin F.-X. Adv. Synth. Catal. 2010, 352, 33. |
| [14] | Liu B.; Zheng G.; Liu X.; Xu C.; Liu J.; Wang M. Chem. Commun. 2013, 49, 2201. |
| [15] | Liu J.; Liu Y.; Du W.; Dong Y.; Liu J.; Wang M. J. Org. Chem. 2013, 78, 7293. |
| [16] | Dong Y.; Liu B.; Chen P.; Liu Q.; Wang M. Angew. Chem. 2014, 126, 3510. |
| [17] | Otsuka S.; Fujino D.; Murakami K.; Yorimitsu H.; Osuka A. Chem. Eur. J. 2014, 20, 13146. |
| [18] | Vasu D.; Yorimitsu H.; Osuka A. Synthesis 2015, 47, 3286. |
| [19] | Liu B.; Chang J.; Zheng G.; Song X.; Wang M. Eur. J. Org. Chem. 2015, 4611. |
| [20] | Chang J.; Liu B.; Yang Y.; Wang M. Org. Lett. 2016, 18, 3984. |
| [21] | Wang S.-M.; Wang X.-Y.; Qin H.-L.; Zhang C.-P. Chem. Eur. J. 2016, 22, 6542. |
| [22] | Iwasaki M.; Topolov?an N.; Hu H.; Nishimura Y.; Gagnot G.; Na nakorn R.; Yuvacharaskul R.; Nakajima K.; Nishihara Y. Org. Lett. 2016, 18, 1642. |
| [23] | Wang Q.; Liu Z.; Lou J.; Yu Z. Org. Lett. 2018, 20, 6007. |
| [24] | Otsuka S.; Nogi K.; Yorimitsu H. Angew. Chem., Int. Ed. 2018, 57, 6653. |
| [25] | Minami H.; Nogi K.; Yorimitsu H. Org. Lett. 2019, 21, 2518. |
| [26] | Uno D.; Nogi K.; Yorimitsu H. Org. Lett. 2019, 21, 8295. |
| [27] | Xu J.-X.; Zhao F.; Wu X.-F. Org. Biomol. Chem. 2020, 18, 9796. |
| [28] | Delcaillau T.; Schmitt H. L.; Boehm P.; Falk E.; Morandi B. ACS Catal. 2022, 12, 6081. |
| [29] | Yang S.; Yu X.; Poater A.; Cavallo L.; Cazin C. S. J.; Nolan S. P.; Szostak M. Org. Lett. 2022, 24, 9210. |
| [30] | Mond J.; Langer C.; Quincke F. J. Chem. Soc., Trans. 1890, 57, 749. |
| [31] | Wilke G. Angew. Chem., Int. Ed. 1988, 27, 185. |
| [32] | Stephan Enthaler, C. I. S. M. W. Catal. Lett. 2013, 143, 424. |
| [33] | Yamamoto K.; Otsuka S.; Nogi K.; Yorimitsu H. ACS Catal. 2017, 7, 7623. |
| [34] | Yamada K.; Yanagi T.; Yorimitsu H. Org. Lett. 2020, 22, 9712. |
| [35] | Inami T.; Kurahashi T.; Matsubara S. Synlett 2021, 32, 1948. |
| [36] | Shibata T.; Sekine A.; Akino M.; Ito M. Chem. Commun., 2021, 57, 9048. |
| [37] | Mai W.-P.; Sui H.-D.; Lv M.-X.; Lu K. J. Chem. Res. 2021, 45, 890. |
| [38] | Pan F.; Wang H.; Shen P.-X.; Zhao J.; Shi Z.-J. Chem. Sci. 2013, 4, 1573. |
| [39] | Uetake Y.; Niwa T.; Hosoya T. Org. Lett. 2016, 18, 2758. |
| [40] | (a) Sherry B. D.; Fürstner A. Acc. Chem. Res. 2008, 41, 1500. |
| [40] | (b) Czaplik W. M.; Mayer M.; Cvengros, Wangelin, J.; A. Jacobi von. ChemSusChem 2009, 2, 396. |
| [40] | (c) Piontek A.; Bisz E.; Szostak M. Angew. Chem., Int. Ed. 2018, 57, 11116. |
| [41] | Blanksby S. J.; Ellison G. B. Acc. Chem. Res. 2003, 36, 255. |
| [42] | Lou J.; Wang Q.; Wu K.; Wu P.; Yu Z. Org. Lett. 2017, 19, 3287. |
| [43] | Chen S.; Guo X.; Hou H.; Geng S.; Liu Z.; He Y.; Xue X.-S.; Feng Z. Angew. Chem., Int. Ed. 2023, 62, e202303470. |
| [44] | Zhang Y.; Li T.-J.; Lv L.; Liu J.-Q.; Wang X.-S. J. Heterocyclic. Chem. 2022, 59, 67. |
| [45] | Tian Z.-Y.; Wang S.-M.; Jia S.-J.; Song H.-X.; Zhang C.-P. Org. Lett. 2017, 19, 5454. |
| [46] | Li Y.; Wang H.; Wang Z.; Alhumade H.; Huang Z.; Lei A. Chem. Sci. 2023, 14, 372. |
| [47] | Nambo M.; Crudden C. M. Angew. Chem., Int. Ed. 2014, 53, 742. |
| [48] | Simko? D. C.; Elekes P.; Pa?zma?ndi V.; Nova?k Z. Org. Lett. 2018, 20, 676. |
| [49] | Li Y.; Bao G.; Wu X.-F. Chem. Sci. 2020, 11, 2187. |
| [50] | Tian Q.; Xu S.; Zhang C.; Liu X.; Wu X.; Li Y. J.Org. Chem. 2021, 86, 8797. |
| [51] | Yu H.; Zhao L.; Diao Q.; Li T.; Liao P.; Hou D.; Xin G. Synlett 2017, 28, 1828. |
| [52] | Zhang X.-S.; Zhang Y.-F.; Li Z.-W.; Luo F.-X.; Shi Z.-J. Angew. Chem., Int. Ed. 2015, 54, 5478. |
| [53] | Ming X.-X.; Wu S.; Tian Z.-Y.; Song J.-W.; Zhang C.-P. Org. Lett. 2021, 23, 6795. |
/
| 〈 |
|
〉 |