研究论文

电催化N-芳基甘氨酸和苯并[e][1,2,3]噁噻嗪-2,2-二氧化物的串联脱羧环化反应

  • 何蔺恒 ,
  • 夏稳 ,
  • 周玉祥 ,
  • 于贤勇
展开
  • a 湖南工程学院电气与信息工程学院 湖南湘潭 411104
    b 四川大学化学学院 成都 610064
    c 湖南科技大学 理论有机化学与功能分子教育部重点实验室 湖南湘潭 411201

收稿日期: 2023-10-26

  修回日期: 2023-12-06

  网络出版日期: 2023-12-18

基金资助

湖南省科技创新计划(2021RC5028)

Electrocatalysis Decarboxylative Annulation of Benzol[e][1,2,3]-oxathiazine-2,2-dioxides with N-Arylglycines

  • Linheng He ,
  • Wen Xia ,
  • Yuxiang Zhou ,
  • Xianyong Yu
Expand
  • a College of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan, Hunan 411104
    b College of Chemisry, Sichuan University, Chengdu 610207
    c Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan 411201

Received date: 2023-10-26

  Revised date: 2023-12-06

  Online published: 2023-12-18

Supported by

Science and Technology Innovation Program of Hunan Province(2021RC5028)

摘要

苯并[e]咪唑[1,5-c][1,2,3]并噁噻嗪-5,5-二氧化物是一类高价值的稠氮杂环化合物, 具有重要的生物活性和药理活性. 报道了一种电化学促进的苯并[e][1,2,3]噁噻嗪-2,2-二氧化物和N-芳基甘氨酸的串联脱羧偶联/成环反应, 合成了一系列苯并[e]咪唑[1,5-c][1,2,3]并噁噻嗪-5,5-二氧化物. 该反应具有条件温和绿色, 操作简便, 产率高, 官能团兼容性好, 易放大等优点, 具有较高的应用价值.

本文引用格式

何蔺恒 , 夏稳 , 周玉祥 , 于贤勇 . 电催化N-芳基甘氨酸和苯并[e][1,2,3]噁噻嗪-2,2-二氧化物的串联脱羧环化反应[J]. 有机化学, 2024 , 44(3) : 997 -1004 . DOI: 10.6023/cjoc202310027

Abstract

Benzo[e]imidazo[1,2,3]oxathiazine-5,5-dioxides are a significant class of fused N-heterocycles, possessing diverse biological and pharmacological activities. In this paper, a novel method for the synthesis of benzo[e]imidazo[1,2,3]oxathia- zine-5,5-dioxides through electrochemical cascade decarboxylative coupling/annulation of benzol[e][1,2,3]oxathiazine- 2,2-dioxides with N-arylglycines was reported. A wide variety of benzo[e]imidazo[1,2,3]oxathiazine-5,5-dioxides were efficiently constructed in good to excellent yields. This strategy offers notable benefits, such as gentle and environmentally friendly conditions, operational simplicity, impressive yields, excellent tolerance towards various functional groups, and straightforward scalability, making it highly valuable for practical applications.

参考文献

[1]
(a) Ma C.; Fang P.; Liu Z.-R.; Xu S.-S.; Xu K.; Cheng X.; Lei A.; Xu H.-C.; Zeng C.; Mei T.-S. Sci. Bull. 2021, 66, 2412.
[1]
(b) Yuan Y.; Yang J.; Lei A. Chem. Soc. Rev. 2021, 50, 10058.
[1]
(c) Lian F.; Xu K.; Zeng C. Chem. Rec. 2021, 21, 2290.
[1]
(d) Sun K.; Xiao F.; Yu B.; He W.-M. Chin. J. Catal. 2021, 42, 1921.
[1]
(e) Chen N.; Xu H.-C. Chem. Rec. 2021, 21, 2306.
[1]
(f) Wang Z.; Ma C.; Fang P.; Xu H.; Mei T. Acta Chim. Sinica 2022, 80, 1115. (in Chinese)
[1]
( 王振华, 马聪, 方萍, 徐海超, 梅天胜, 化学学报, 2022, 80, 1115.)
[1]
(g) Tan Z.; Zhang H.; Xu K.; Zeng C. Sci. China: Chem. 2023, 67, 450.
[1]
(h) Wei W.; Zhan L.; Gao L.; Huang G.; Ma X. Chin. J. Org. Chem. 2023, 43, 17. (in Chinese)
[1]
( 魏琬絜, 詹磊, 高雷, 黄国保, 马献力, 有机化学, 2023, 43, 17.)
[1]
(i) Du L.; Zhang H. Chin. J. Org. Chem. 2023, 43, 1726. (in Chinese)
[1]
( 杜琳琳, 张华, 有机化学, 2023, 43, 1726.)
[2]
(a) Chen D.; Nie X.; Feng Q.; Zhang Y.; Wang Y.; Wang Q.; Huang L.; Huang S.; Liao S. Angew. Chem., Int. Ed. 2021, 60, 27271.
[2]
(b) Wu Y.; Chen J.-Y.; Liao H.-R.; Shu X.-R.; Duan L.-L.; Yang X.-F.; He W.-M. Green Synth. Catal. 2021, 2, 233.
[2]
(c) Li H.; Chen P.; Wu Z.; Lu Y.; Peng J.; Chen J.; He W. Chin. J. Org. Chem. 2022, 42, 3398. (in Chinese)
[2]
( 李红霞, 陈棚, 伍智林, 陆雨函, 彭俊梅, 陈锦杨, 何卫民, 有机化学, 2022, 42, 3398.)
[2]
(d) Mu S.; Li H.; Wu Z.; Peng J.; Chen J.; He W. Chin. J. Org. Chem. 2022, 42, 4292. (in Chinese)
[2]
( 穆思宇, 李红霞, 伍智林, 彭俊梅, 陈锦杨, 何卫民, 有机化学, 2022, 42, 4292.)
[2]
(e) Ping M.-Q.; Guo M.-Z.; Li R.-T.; Wang Z.-C.; Ma C.; Wen L.-R.; Ni S.-F.; Guo W.; Li M.; Zhang L.-B. Org. Lett. 2022, 24, 7410.
[2]
(f) Jiang J.; Wang K.-L.; Li X.; Wu C.; Ji H.-T.; Chen X.; He W.-M. Chin. Chem. Lett. 2023, 34, 108699.
[2]
(g) Song H.-Y.; Jiang J.; Song Y.-H.; Zhou M.-H.; Wu C.; Chen X.; He W.-M. Chin. Chem. Lett. 2023, DOI:10.1016/j.cclet. 2023.109246.
[2]
(h) Zhang S.; Li Y.; Wang T.; Li M.; Wen L.; Guo W. Org. Lett. 2022, 24, 1742.
[3]
(a) Kumar G. S.; Shinde P. S.; Chen H.; Muralirajan K.; Kancherla R.; Rueping M. Org. Lett. 2022, 24, 6357.
[3]
(b) Wang Z.-H.; Wei L.; Jiao K.-J.; Ma C.; Mei T.-S. Chem. Commun. 2022, 58, 8202.
[3]
(c) Lian F.; Xu K.; Zeng C. Sci. China: Chem. 2023, 66, 540.
[3]
(d) Lian F.; Luo F.; Wang M.; Xu K.; Zeng C. Chin. J. Chem. 2023, 41, 1583.
[3]
(e) Lian F.; Xu K.; Zeng C. CCS Chem. 2023, 5, 1973.
[4]
(a) Liu K.; Song C.; Lei A. Org. Biomol. Chem. 2018, 16, 2375.
[4]
(b) Tang H.-T.; Jia J.-S.; Pan Y.-M. Org. Biomol. Chem. 2020, 18, 5315.
[4]
(c) He M.-X.; Mo Z.-Y.; Wang Z.-Q.; Cheng S.-Y.; Xie R.-R.; Tang H.-T.; Pan Y.-M. Org. Lett. 2020, 22, 724.
[4]
(d) Hou Z.-W.; Jiang T.; Wu T.-X.; Wang L. Org. Lett. 2021, 23, 8585.
[4]
(e) Jiang J.; Wang Z.; He W.-M. Chin. Chem. Lett. 2021, 32, 1591.
[4]
(f) Zeng W.-M.; Wang Z.-L.; He Y.-H.; Guan Z. Green Chem. 2022, 24, 4928.
[4]
(g) Tan Z.; He X.; Xu K.; Zeng C. ChemSusChem 2022, 15, e202102360.
[4]
(h) Chen M.; Wu Z.-J.; Song J.; Xu H.-C. Angew. Chem., Int. Ed. 2022, 61, e202115954.
[4]
(i) Wu Z.-L.; Chen J.-Y.; Tian X.-Z.; Ouyang W.-T.; Zhang Z.-T.; He W.-M. Chin. Chem. Lett. 2022, 33, 1501.
[4]
(j) Tan Z.; Xiang F.; Xu K.; Zeng C. Org. Lett. 2022, 24, 5345.
[4]
(k) Feng T.; Wang S.; Liu Y.; Liu S.; Qiu Y. Angew. Chem., Int. Ed. 2022, 61, e202115178.
[4]
(l) Lai X.-L.; Chen M.; Wang Y.; Song J.; Xu H.-C. J. Am. Chem. Soc. 2022, 144, 20201.
[5]
(a) Winum J.-Y.; Scozzafava A.; Montero J.-L.; Supuran C. T. Med. Res. Rev. 2005, 25, 186.
[5]
(b) Cannalire R.; Tarantino D.; Astolfi A.; Barreca M. L.; Sabatini S.; Massari S.; Tabarrini O.; Milani M.; Querat G.; Mastrangelo E.; Manfroni G.; Cecchetti V. Eur. J. Med. Chem. 2018, 143, 1667.
[6]
Laha J. K.; Jethava K. P. J. Org. Chem. 2017, 82, 3597.
[7]
(a) Si Y.-F.; Sun K.; Chen X.-L.; Fu X.-Y.; Liu Y.; Zeng F.-L.; Shi T.; Qu L.-B.; Yu B. Org. Lett. 2020, 22, 6960.
[7]
(b) Huang X.-L.; Cheng Y.-Z.; Zhang X.; You S.-L. Org. Lett. 2020, 22, 9699.
[7]
(c) Cheng Y.-Z.; Huang X.-L.; Zhuang W.-H.; Zhao Q.-R.; Zhang X.; Mei T.-S.; You S.-L. Angew. Chem., Int. Ed. 2020, 59, 18062.
[7]
(d) Zhu X.; Li X.; Li X.; Lv J.; Sun K.; Song X.; Yang D. Org. Chem. Front. 2021, 8, 3128.
[7]
(e) Hu W.; Zhan Q.; Zhou H.; Cao S.; Jiang Z. Chem. Sci. 2021, 12, 6543.
[7]
(f) Shi T.; Liu Y.-T.; Wang S.-S.; Lv Q.-Y.; Yu B. Chin. J. Chem. 2022, 40, 97.
[7]
(g) Li S.; Li X.; Wang T.; Yang Q.; Ouyang Z.; Chen J.; Zhai H.; Li X.; Cheng B. Adv. Synth. Catal. 2022, 364, 2346.
[7]
(h) Ouyang W.-T.; Ji H.-T.; Jiang J.; Wu C.; Hou J.-C.; Zhou M.-H.; Lu Y.-H.; Ou L.-J.; He W.-M. Chem. Commun. 2023, 59, 14029.
[7]
(i) Zeng W.; Li W.; Chen H.; Zhou L. Org. Lett. 2022, 24, 3265.
[8]
Shi A.; Sun K.; Chen X.; Qu L.; Zhao Y.; Yu B. Org. Lett. 2022, 24, 299.
[9]
Shi A.; Sun K.; Wu Y.; Xiang P.; Krylov I. B.; Terent'ev A. O.; Chen X.; Yu B. J. Catal. 2022, 415, 28.
[10]
Wang X.; Shi A.; Huang X.-Q.; Chen X.; Li T.; Qu L.; Yu B. Org. Biomol. Chem. 2022, 20, 3798.
[11]
(a) Lu Y.-H.; Mu S.-Y.; Jiang J.; Zhou M.-H.; Wu C.; Ji H.-T.; He W.-M. ChemSusChem 2023, 16, e202300523.
[11]
(b) Lu Y.-H.; Zhang Z.-T.; Wu H.-Y.; Zhou M.-H.; Song H.-Y.; Ji H.-T.; Jiang J.; Chen J.-Y.; He W.-M. Chin. Chem. Lett. 2023, 34, 108036.
[12]
Cui J.-F.; Zhong W.-Q.; Huang J.-M. J. Org. Chem. 2023, 88, 1147.
[13]
(a) Zhu L.; Xiong P.; Mao Z.-Y.; Wang Y.-H.; Yan X.; Lu X.; Xu H.-C. Angew. Chem., Int. Ed. 2016, 55, 2226.
[13]
(b) Hou Z.-W.; Mao Z.-Y.; Zhao H.-B.; Melcamu Y. Y.; Lu X.; Song J.; Xu H.-C. Angew. Chem., Int. Ed. 2016, 55, 9168.
文章导航

/