电催化N-芳基甘氨酸和苯并[e][1,2,3]噁噻嗪-2,2-二氧化物的串联脱羧环化反应
收稿日期: 2023-10-26
修回日期: 2023-12-06
网络出版日期: 2023-12-18
基金资助
湖南省科技创新计划(2021RC5028)
Electrocatalysis Decarboxylative Annulation of Benzol[e][1,2,3]-oxathiazine-2,2-dioxides with N-Arylglycines
Received date: 2023-10-26
Revised date: 2023-12-06
Online published: 2023-12-18
Supported by
Science and Technology Innovation Program of Hunan Province(2021RC5028)
何蔺恒 , 夏稳 , 周玉祥 , 于贤勇 . 电催化N-芳基甘氨酸和苯并[e][1,2,3]噁噻嗪-2,2-二氧化物的串联脱羧环化反应[J]. 有机化学, 2024 , 44(3) : 997 -1004 . DOI: 10.6023/cjoc202310027
Benzo[e]imidazo[1,2,3]oxathiazine-5,5-dioxides are a significant class of fused N-heterocycles, possessing diverse biological and pharmacological activities. In this paper, a novel method for the synthesis of benzo[e]imidazo[1,2,3]oxathia- zine-5,5-dioxides through electrochemical cascade decarboxylative coupling/annulation of benzol[e][1,2,3]oxathiazine- 2,2-dioxides with N-arylglycines was reported. A wide variety of benzo[e]imidazo[1,2,3]oxathiazine-5,5-dioxides were efficiently constructed in good to excellent yields. This strategy offers notable benefits, such as gentle and environmentally friendly conditions, operational simplicity, impressive yields, excellent tolerance towards various functional groups, and straightforward scalability, making it highly valuable for practical applications.
| [1] | (a) Ma C.; Fang P.; Liu Z.-R.; Xu S.-S.; Xu K.; Cheng X.; Lei A.; Xu H.-C.; Zeng C.; Mei T.-S. Sci. Bull. 2021, 66, 2412. |
| [1] | (b) Yuan Y.; Yang J.; Lei A. Chem. Soc. Rev. 2021, 50, 10058. |
| [1] | (c) Lian F.; Xu K.; Zeng C. Chem. Rec. 2021, 21, 2290. |
| [1] | (d) Sun K.; Xiao F.; Yu B.; He W.-M. Chin. J. Catal. 2021, 42, 1921. |
| [1] | (e) Chen N.; Xu H.-C. Chem. Rec. 2021, 21, 2306. |
| [1] | (f) Wang Z.; Ma C.; Fang P.; Xu H.; Mei T. Acta Chim. Sinica 2022, 80, 1115. (in Chinese) |
| [1] | ( 王振华, 马聪, 方萍, 徐海超, 梅天胜, 化学学报, 2022, 80, 1115.) |
| [1] | (g) Tan Z.; Zhang H.; Xu K.; Zeng C. Sci. China: Chem. 2023, 67, 450. |
| [1] | (h) Wei W.; Zhan L.; Gao L.; Huang G.; Ma X. Chin. J. Org. Chem. 2023, 43, 17. (in Chinese) |
| [1] | ( 魏琬絜, 詹磊, 高雷, 黄国保, 马献力, 有机化学, 2023, 43, 17.) |
| [1] | (i) Du L.; Zhang H. Chin. J. Org. Chem. 2023, 43, 1726. (in Chinese) |
| [1] | ( 杜琳琳, 张华, 有机化学, 2023, 43, 1726.) |
| [2] | (a) Chen D.; Nie X.; Feng Q.; Zhang Y.; Wang Y.; Wang Q.; Huang L.; Huang S.; Liao S. Angew. Chem., Int. Ed. 2021, 60, 27271. |
| [2] | (b) Wu Y.; Chen J.-Y.; Liao H.-R.; Shu X.-R.; Duan L.-L.; Yang X.-F.; He W.-M. Green Synth. Catal. 2021, 2, 233. |
| [2] | (c) Li H.; Chen P.; Wu Z.; Lu Y.; Peng J.; Chen J.; He W. Chin. J. Org. Chem. 2022, 42, 3398. (in Chinese) |
| [2] | ( 李红霞, 陈棚, 伍智林, 陆雨函, 彭俊梅, 陈锦杨, 何卫民, 有机化学, 2022, 42, 3398.) |
| [2] | (d) Mu S.; Li H.; Wu Z.; Peng J.; Chen J.; He W. Chin. J. Org. Chem. 2022, 42, 4292. (in Chinese) |
| [2] | ( 穆思宇, 李红霞, 伍智林, 彭俊梅, 陈锦杨, 何卫民, 有机化学, 2022, 42, 4292.) |
| [2] | (e) Ping M.-Q.; Guo M.-Z.; Li R.-T.; Wang Z.-C.; Ma C.; Wen L.-R.; Ni S.-F.; Guo W.; Li M.; Zhang L.-B. Org. Lett. 2022, 24, 7410. |
| [2] | (f) Jiang J.; Wang K.-L.; Li X.; Wu C.; Ji H.-T.; Chen X.; He W.-M. Chin. Chem. Lett. 2023, 34, 108699. |
| [2] | (g) Song H.-Y.; Jiang J.; Song Y.-H.; Zhou M.-H.; Wu C.; Chen X.; He W.-M. Chin. Chem. Lett. 2023, DOI:10.1016/j.cclet. 2023.109246. |
| [2] | (h) Zhang S.; Li Y.; Wang T.; Li M.; Wen L.; Guo W. Org. Lett. 2022, 24, 1742. |
| [3] | (a) Kumar G. S.; Shinde P. S.; Chen H.; Muralirajan K.; Kancherla R.; Rueping M. Org. Lett. 2022, 24, 6357. |
| [3] | (b) Wang Z.-H.; Wei L.; Jiao K.-J.; Ma C.; Mei T.-S. Chem. Commun. 2022, 58, 8202. |
| [3] | (c) Lian F.; Xu K.; Zeng C. Sci. China: Chem. 2023, 66, 540. |
| [3] | (d) Lian F.; Luo F.; Wang M.; Xu K.; Zeng C. Chin. J. Chem. 2023, 41, 1583. |
| [3] | (e) Lian F.; Xu K.; Zeng C. CCS Chem. 2023, 5, 1973. |
| [4] | (a) Liu K.; Song C.; Lei A. Org. Biomol. Chem. 2018, 16, 2375. |
| [4] | (b) Tang H.-T.; Jia J.-S.; Pan Y.-M. Org. Biomol. Chem. 2020, 18, 5315. |
| [4] | (c) He M.-X.; Mo Z.-Y.; Wang Z.-Q.; Cheng S.-Y.; Xie R.-R.; Tang H.-T.; Pan Y.-M. Org. Lett. 2020, 22, 724. |
| [4] | (d) Hou Z.-W.; Jiang T.; Wu T.-X.; Wang L. Org. Lett. 2021, 23, 8585. |
| [4] | (e) Jiang J.; Wang Z.; He W.-M. Chin. Chem. Lett. 2021, 32, 1591. |
| [4] | (f) Zeng W.-M.; Wang Z.-L.; He Y.-H.; Guan Z. Green Chem. 2022, 24, 4928. |
| [4] | (g) Tan Z.; He X.; Xu K.; Zeng C. ChemSusChem 2022, 15, e202102360. |
| [4] | (h) Chen M.; Wu Z.-J.; Song J.; Xu H.-C. Angew. Chem., Int. Ed. 2022, 61, e202115954. |
| [4] | (i) Wu Z.-L.; Chen J.-Y.; Tian X.-Z.; Ouyang W.-T.; Zhang Z.-T.; He W.-M. Chin. Chem. Lett. 2022, 33, 1501. |
| [4] | (j) Tan Z.; Xiang F.; Xu K.; Zeng C. Org. Lett. 2022, 24, 5345. |
| [4] | (k) Feng T.; Wang S.; Liu Y.; Liu S.; Qiu Y. Angew. Chem., Int. Ed. 2022, 61, e202115178. |
| [4] | (l) Lai X.-L.; Chen M.; Wang Y.; Song J.; Xu H.-C. J. Am. Chem. Soc. 2022, 144, 20201. |
| [5] | (a) Winum J.-Y.; Scozzafava A.; Montero J.-L.; Supuran C. T. Med. Res. Rev. 2005, 25, 186. |
| [5] | (b) Cannalire R.; Tarantino D.; Astolfi A.; Barreca M. L.; Sabatini S.; Massari S.; Tabarrini O.; Milani M.; Querat G.; Mastrangelo E.; Manfroni G.; Cecchetti V. Eur. J. Med. Chem. 2018, 143, 1667. |
| [6] | Laha J. K.; Jethava K. P. J. Org. Chem. 2017, 82, 3597. |
| [7] | (a) Si Y.-F.; Sun K.; Chen X.-L.; Fu X.-Y.; Liu Y.; Zeng F.-L.; Shi T.; Qu L.-B.; Yu B. Org. Lett. 2020, 22, 6960. |
| [7] | (b) Huang X.-L.; Cheng Y.-Z.; Zhang X.; You S.-L. Org. Lett. 2020, 22, 9699. |
| [7] | (c) Cheng Y.-Z.; Huang X.-L.; Zhuang W.-H.; Zhao Q.-R.; Zhang X.; Mei T.-S.; You S.-L. Angew. Chem., Int. Ed. 2020, 59, 18062. |
| [7] | (d) Zhu X.; Li X.; Li X.; Lv J.; Sun K.; Song X.; Yang D. Org. Chem. Front. 2021, 8, 3128. |
| [7] | (e) Hu W.; Zhan Q.; Zhou H.; Cao S.; Jiang Z. Chem. Sci. 2021, 12, 6543. |
| [7] | (f) Shi T.; Liu Y.-T.; Wang S.-S.; Lv Q.-Y.; Yu B. Chin. J. Chem. 2022, 40, 97. |
| [7] | (g) Li S.; Li X.; Wang T.; Yang Q.; Ouyang Z.; Chen J.; Zhai H.; Li X.; Cheng B. Adv. Synth. Catal. 2022, 364, 2346. |
| [7] | (h) Ouyang W.-T.; Ji H.-T.; Jiang J.; Wu C.; Hou J.-C.; Zhou M.-H.; Lu Y.-H.; Ou L.-J.; He W.-M. Chem. Commun. 2023, 59, 14029. |
| [7] | (i) Zeng W.; Li W.; Chen H.; Zhou L. Org. Lett. 2022, 24, 3265. |
| [8] | Shi A.; Sun K.; Chen X.; Qu L.; Zhao Y.; Yu B. Org. Lett. 2022, 24, 299. |
| [9] | Shi A.; Sun K.; Wu Y.; Xiang P.; Krylov I. B.; Terent'ev A. O.; Chen X.; Yu B. J. Catal. 2022, 415, 28. |
| [10] | Wang X.; Shi A.; Huang X.-Q.; Chen X.; Li T.; Qu L.; Yu B. Org. Biomol. Chem. 2022, 20, 3798. |
| [11] | (a) Lu Y.-H.; Mu S.-Y.; Jiang J.; Zhou M.-H.; Wu C.; Ji H.-T.; He W.-M. ChemSusChem 2023, 16, e202300523. |
| [11] | (b) Lu Y.-H.; Zhang Z.-T.; Wu H.-Y.; Zhou M.-H.; Song H.-Y.; Ji H.-T.; Jiang J.; Chen J.-Y.; He W.-M. Chin. Chem. Lett. 2023, 34, 108036. |
| [12] | Cui J.-F.; Zhong W.-Q.; Huang J.-M. J. Org. Chem. 2023, 88, 1147. |
| [13] | (a) Zhu L.; Xiong P.; Mao Z.-Y.; Wang Y.-H.; Yan X.; Lu X.; Xu H.-C. Angew. Chem., Int. Ed. 2016, 55, 2226. |
| [13] | (b) Hou Z.-W.; Mao Z.-Y.; Zhao H.-B.; Melcamu Y. Y.; Lu X.; Song J.; Xu H.-C. Angew. Chem., Int. Ed. 2016, 55, 9168. |
/
| 〈 |
|
〉 |