N-苄基丙烯酰胺的电化学三氟甲基化/螺环化合成三氟甲基取代2-氮杂螺[4.5]癸烷
收稿日期: 2023-10-31
修回日期: 2023-12-16
网络出版日期: 2023-12-29
基金资助
国家自然科学基金(22071171); 国家自然科学基金(22101201); 浙江省自然科学基金(LZ22B020003); 浙江省自然科学基金(LQ22B020005)
Electrochemical Trifluoromethylation/Spirocyclization of N-Benzylacrylamides to Construct Trifluoromethylated 2-Azaspiro[4.5]decanes
Received date: 2023-10-31
Revised date: 2023-12-16
Online published: 2023-12-29
Supported by
National Natural Science Foundation of China(22071171); National Natural Science Foundation of China(22101201); Natural Science Foundation of Zhejiang Province(LZ22B020003); Natural Science Foundation of Zhejiang Province(LQ22B020005)
周兰 , 何红 , 杨德巧 , 侯中伟 , 王磊 . N-苄基丙烯酰胺的电化学三氟甲基化/螺环化合成三氟甲基取代2-氮杂螺[4.5]癸烷[J]. 有机化学, 2024 , 44(3) : 981 -988 . DOI: 10.6023/cjoc202310032
An electrochemical trifluoromethylation/spirocyclization of N-benzylacrylamides with CF3SO2Na as the source of trifluoromethyl group has been developed. This approach is carried out in a simple undivided cell at room temperature without relying on metal-reagents and oxidants, which provides a green and efficient route to construct a series of CF3-containing 2-azaspiro[4.5]decanes. Furthermore, the gram-scale synthesis and transformation can be easily performed.
| [1] | (a) Muller K.; Faeh C.; Diederich F. Science 2007, 317, 1881. |
| [1] | (b) Purser S.; Moore P. R.; Swallow S.; Gouverneur V. Chem. Soc. Rev. 2008, 37, 320. |
| [1] | (c) Huchet Q. A.; Kuhn B.; Wagner B.; Fischer H.; Kansy M.; Zimmerli D.; Carreira E. M.; Muller K. J. Fluorine Chem. 2013, 152, 119. |
| [1] | (d) Wang J.; Sanchez-Rosello M.; Acena J. L.; Pozo C.; Sorochinsky A. E.; Fustero S.; Soloshonok V. A.; Liu H. Chem. Rev. 2014, 114, 2432. |
| [2] | Purser S.; Moore P. R.; Swallow S.; Gouverneur V. Chem. Soc. Rev. 2008, 37, 320. |
| [3] | (a) Merino E.; Nevado C. Chem. Soc. Rev. 2014, 43, 6598. |
| [3] | (b) Charvillat T.; Bernardelli P.; Daumas M.; Pannecoucke X.; Ferey V.; Besset T. Chem. Soc. Rev. 2021, 50, 8178. |
| [4] | (a) Charpentier J.; Früh N.; Togni A. Chem. Rev. 2015, 115, 650. |
| [4] | (b) Yang X.; Wu T.; Phipps R. J.; Toste F. D. Chem. Rev. 2015, 115, 826. |
| [4] | (c) Xiao H.; Zhang Z.; Fang Y.; Zhu L.; Li C. Chem. Soc. Rev. 2021, 50, 6308. |
| [4] | (d) Chen J.-Y.; Huang J.; Sun K.; He W.-M. Org. Chem. Front. 2022, 9, 1152. |
| [5] | (a) Yu L.; Dai A.; Zhang W.; Liao A.; Guo S.; Wu J. J. Agric. Food Chem. 2022, 70, 10693. |
| [5] | (b) Westphal R.; Filho E. V.; Medici F.; Benaglia M.; Greco S. J. Synthesis 2022, 54, 2927. |
| [5] | (c) Ding A.; Meazza M.; Guo H.; Yang J. W.; Rios R. Chem. Soc. Rev. 2018, 47, 5946. |
| [6] | (a) Kong W.; Merino E.; Nevado C. Angew. Chem., Int. Ed. 2014, 53, 5078. |
| [6] | (b) Tang S.; Yuan L.; Li Z.-Z.; Peng Z.-Y.; Deng Y.-L.; Wang L.-N.; Huang G.-X.; Sheng R.-L. Tetrahedron Lett. 2017, 58, 2127. |
| [6] | (c) Yuan L.; Jiang S.-M.; Li Z.-Z.; Zhu Y.; Yu J.; Li L.; Li M.-Z.; Tang S.; Sheng R.-R. Org. Biomol. Chem. 2018, 16, 2406. |
| [6] | (d) Li C.; Zhao Y.; Zhou J.; Wang X.; Hou J.; Song Y.; Liu W.; Han G. Org. Biomol. Chem. 2020, 18, 8376. |
| [6] | (e) Peng C.-C.; Wu L.-J.; Pi S.-F. Org. Biomol. Chem. 2021, 19, 7602. |
| [6] | (f) Peng C.-C.; Long F.; Hu Y.-C.; Zhou Z.-R.; Zhang K.-Y.; Wang R.; Ye M.-H.; Xiao H.-B.; Wu L.-J. J. Org. Chem. 2022, 87, 2740. |
| [6] | (g) Tang J.; Luo W.; Zhou J. Chin. J. Org. Chem. 2023, 43, 3006. (in Chinese) |
| [6] | ( 唐菁, 罗文坤, 周俊, 有机化学, 2023, 43, 3006.) |
| [7] | (a) Kong W. Q.; Casimiro M.; Fuentes N.; Merino E.; Nevado C. Angew. Chem., Int. Ed. 2013, 52, 13086. |
| [7] | (b) Han G.; Liu Y.; Wang Q. Org. Lett. 2014, 16, 3188. |
| [7] | (c) Wu J.; Ma D.; Tang G.; Zhao Y. Org. Lett. 2019, 21, 7674. |
| [7] | (d) Zhang Z.; Tang X.-J.; Dolbier W. R., Jr. Org. Lett. 2016, 18, 1048. |
| [7] | (e) Zhao Y.; Wang X.; Yao R.; Li C.; Xu Z.; Zhang L.; Han G.; Hou J.; Liu Y.; Song Y. Adv. Synth. Catal. 2022, 364, 637. |
| [7] | (f) Tang S.; Yuan L.; Li Z.-Z.; Peng Z.-Y.; Deng Y.-L.; Wang L.-N.; Huang G.-X.; Sheng R.-L. Tetrahedron Lett. 2017, 58, 2127. |
| [8] | (a) Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230. |
| [8] | (b) Wiebe A.; Gieshoff T.; M?hle S.; Rodrigo E.; Zirbes M.; Waldvogel S. R. Angew. Chem., Int. Ed. 2018, 57, 5594. |
| [8] | (c) Jiang Y.; Xu K.; Zeng C. Chem. Rev. 2018, 118, 4485. |
| [8] | (d) Yuan Y.; Lei A. Acc. Chem. Res. 2019, 52, 3309. |
| [8] | (e) Xiong P.; Xu H.-C. Acc. Chem. Res. 2019, 52, 3339. |
| [8] | (f) Feng E.-Q.; Hou Z.-W.; Xu H.-C. Chin. J. Org. Chem. 2019, 39, 1424. (in Chinese) |
| [8] | ( 冯恩祺, 侯中伟, 徐海超, 有机化学, 2019, 39, 1424.) |
| [8] | (g) Tang H.; Pan Y. Chin. J. Org. Chem. 2021, 41, 435. (in Chinese) |
| [8] | ( 唐海涛, 潘英明, 有机化学, 2021, 41, 435.) |
| [8] | (h) Meng W.; Xu K.; Guo B.; Zeng C. Chin. J. Org. Chem. 2021, 41, 2621. (in Chinese) |
| [8] | ( 孟薇, 徐坤, 郭兵兵, 曾程初, 有机化学, 2021, 41, 2621.) |
| [8] | (i) Chen N.; Xu H.-C. Green Synth. Catal. 2021, 2, 165. |
| [8] | (j) Wu Y.; Chen J.-Y.; Liao H.-R.; Shu X.-R.; Duan L.-L.; Yang X.-F.; He W.-M. Green Synth. Catal. 2021, 2, 233. |
| [8] | (k) Luo M.-J.; Xiao Q.; Li J.-H. Chem. Soc. Rev. 2022, 51, 7206. |
| [8] | (l) Hou Z.-W.; Xu H.-C.; Wang L. Curr. Opin. Electrochem. 2022, 34, 100988. |
| [8] | (m) Cheng X.; Lei A.; Mei T.-S.; Xu H.-C.; Xu K.; Zeng C. CCS Chem. 2022, 4, 1120. |
| [8] | (n) Wan Q.; Zhang Z.; Hou Z.-W.; Wang L. Org. Chem. Front. 2023, 10, 2830. |
| [8] | (o) Zhou X.-Q.; Tang H.-T.; Cui F.-H.; Liang Y.; Li S.-H.; Pan Y.-M. Green Chem. 2023, 25, 5024. |
| [8] | (p) Tang H.-T.; Pan Y.-Z.; Pan Y.-M. Green Chem. 2023, 25, 8313. |
| [9] | (a) Bhaskaran R. P.; Babua B. P. Adv. Synth. Catal. 2020, 362, 5219. |
| [9] | (b) Kisukuri C. M.; Fernandes V. A.; Delgado J. A. C.; H?ring A. P.; Paix?o M. W.; Waldvogel S. R. Chem. Rec. 2021, 21, 2502. |
| [10] | (a) Fujiwara Y.; Dixon J. A.; O’Hara F.; Funder E. D.; Dixon D. D.; Rodriguez R. A.; Baxter R. D.; Herle B.; Sach N.; Collins M. R.; Ishihara Y.; Baran P. S. Nature 2012, 492, 95. |
| [10] | (b) Dou G. Y.; Jiang Y. Y.; Xu K.; Zeng C. C. Org. Chem. Front. 2019, 6, 2392. |
| [11] | (a) Zhang L.; Zhang G.; Wang P.; Li Y.; Lei A. Org. Lett. 2018, 20, 7396. |
| [11] | (b) Ye K.-Y.; Pombar G.; Fu N.; Sauer G. S.; Keresztes I.; Lin S. J. Am. Chem. Soc. 2018, 140, 2438. |
| [11] | (c) Jiang Y.-Y.; Dou G.-Y.; Xu K.; Zeng C.-C. Org. Chem. Front. 2018, 5, 2573. |
| [11] | (d) Ruan Z. X.; Huang Z. X.; Xu Z. N.; Mo G. Q.; Tian X.; Yu X. Y.; Ackermann L. Org. Lett. 2019, 21, 1237. |
| [11] | (e) Zou Z.; Zhang W.; Wang Y.; Kong L.; Karotsis G.; Wang Y.; Pan Y. Org. Lett. 2019, 21, 1857. |
| [11] | (f) Zhang Z.; Zhang L.; Cao Y.; Li F.; Bai G.; Liu G.; Yang Y.; Mo F. Org. Lett. 2019, 21, 762. |
| [11] | (g) Li Z.; Jiao L.; Sun Y.; He Z.; Wei Z.; Liao W.-W. Angew. Chem., Int. Ed. 2020, 59, 7266. |
| [11] | (h) Chen S.-J.; Zhong W.-Q.; Huang J.-M. J. Org. Chem. 2023, 88, 12630. |
| [11] | (i) Chen X.; Jiang J.; Huang X.-J.; He W.-M. Org. Chem. Front. 2023, 10, 3898. |
| [11] | (j) Lei Z.-L.; Liu T.-C.; Cui F.-H.; Pan Y.-M.; Li S.-H.; Tang H.-T. Org. Lett. 2023, 25, 6001. |
| [12] | Arai K.; Watts K.; Wirth T. ChemistryOpen 2014, 3, 23. |
| [13] | (a) Xiong P.; Xu H.-H.; Song J.; Xu H.-C. J. Am. Chem. Soc. 2018, 140, 2460. |
| [13] | (b) Xu H.-H.; Song J.; Xu H.-C. ChemSusChem 2019, 12, 3060. |
| [13] | (c) Wang H.; Xie Y.; Zhou Y.; Cen N.; Chen W. Chin. Chem. Lett. 2022, 33, 221. |
| [13] | (d) Sui D.; Cen N.; Gong R.; Chen Y.; Chen W. Chin. J. Org. Chem. 2023, 43, 3239. (in Chinese) |
| [13] | 岁丹丹, 岑南楠, 龚若蕖, 陈阳, 陈文博, 有机化学, 2023, 43, 3239. |
| [14] | Lübbesmeyer M.; Leifert D.; Sch?fer H.; Studer A. Chem. Commun. 2018, 54, 2240. |
| [15] | (a) Jud W.; Maljuric S.; Kappe C. O.; Cantillo D. Org. Lett. 2019, 21, 7970. |
| [15] | (b) Rodrigo S.; Um C.; Mixdorf J. C.; Gunasekera D.; Nguyen H. M.; Luo L. Org. Lett. 2020, 22, 6719. |
| [16] | Hossain Md. J.; Ono T.; Wakiya K.; Hisaeda Y. Chem. Commun. 2017, 53, 10878. |
| [17] | Guo Y.; Wang R.; Song H.; Liu Y.; Wang Q. Chem. Commun. 2021, 57, 8284. |
| [18] | (a) Li L.; Hou Z.-W.; Li P.; Wang L. J. Org. Chem. 2022, 87, 8697. |
| [18] | (b) Lv Y.; Hou Z.-W.; Wang Y.; Li P.; Wang L. Org. Biomol. Chem. 2023, 21, 1014. |
| [18] | (c) Zhang Z.; Hou Z.-W.; Chen H.; Li P.; Wang L. Green Chem. 2023, 25, 3543. |
| [18] | (d) Zhang Z.; Zhang W.; Hou Z.-W.; Li P.; Wang L. J. Org. Chem. 2023, 88, 13610. |
| [18] | (e) He H.; Wan Q.; Hou Z.-W.; Zhou Q.; Wang L. Org. Lett. 2023, 25, 7014. |
| [18] | (f) Zhao X.-R.; Zhang Y.-C.; Hou Z.-W.; Wang L. Chin. J. Chem. 2023, 41, 2963. |
| [18] | (g) He H.; Lv Y.; Hu J.; Hou Z.-W.; Wang L. Green Chem. 2024, DOI: 10.1039/D3GC04061E. |
| [19] | (a) Nair A. M.; Halder I.; Khan S.; Volla C. M. R. Adv. Synth. Catal. 2020, 362, 224. |
| [19] | (b) Reddy C. R.; Ajaykumar U.; Kolgave D. H.; Ramesh R. J. Org. Chem. 2023, 88, 7117. |
/
| 〈 |
|
〉 |