研究论文

N-苄基丙烯酰胺的电化学三氟甲基化/螺环化合成三氟甲基取代2-氮杂螺[4.5]癸烷

  • 周兰 ,
  • 何红 ,
  • 杨德巧 ,
  • 侯中伟 ,
  • 王磊
展开
  • a 台州学院高等研究院药学院 浙江台州 318000
    b 杭州师范大学材料与化学化工学院 有机硅化学及材料技术教育部重点实验室 杭州 311121
    c 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032

收稿日期: 2023-10-31

  修回日期: 2023-12-16

  网络出版日期: 2023-12-29

基金资助

国家自然科学基金(22071171); 国家自然科学基金(22101201); 浙江省自然科学基金(LZ22B020003); 浙江省自然科学基金(LQ22B020005)

Electrochemical Trifluoromethylation/Spirocyclization of N-Benzylacrylamides to Construct Trifluoromethylated 2-Azaspiro[4.5]decanes

  • Lan Zhou ,
  • Hong He ,
  • De-Qiao Yang ,
  • Zhong-Wei Hou ,
  • Lei Wang
Expand
  • a Advanced Research Institute, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000
    b College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121
    c State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2023-10-31

  Revised date: 2023-12-16

  Online published: 2023-12-29

Supported by

National Natural Science Foundation of China(22071171); National Natural Science Foundation of China(22101201); Natural Science Foundation of Zhejiang Province(LZ22B020003); Natural Science Foundation of Zhejiang Province(LQ22B020005)

摘要

利用CF3SO2Na作为三氟甲基来源, 开发了N-苄基丙烯酰胺的电化学三氟甲基化/螺环化反应. 该方法在室温下于一个简单未分室电解池中进行, 无需依赖金属试剂和氧化剂, 为构建系列三氟甲基取代2-氮杂螺[4.5]癸烷提供了绿色和高效的路径. 此外, 反应易进行克级合成和转化.

本文引用格式

周兰 , 何红 , 杨德巧 , 侯中伟 , 王磊 . N-苄基丙烯酰胺的电化学三氟甲基化/螺环化合成三氟甲基取代2-氮杂螺[4.5]癸烷[J]. 有机化学, 2024 , 44(3) : 981 -988 . DOI: 10.6023/cjoc202310032

Abstract

An electrochemical trifluoromethylation/spirocyclization of N-benzylacrylamides with CF3SO2Na as the source of trifluoromethyl group has been developed. This approach is carried out in a simple undivided cell at room temperature without relying on metal-reagents and oxidants, which provides a green and efficient route to construct a series of CF3-containing 2-azaspiro[4.5]decanes. Furthermore, the gram-scale synthesis and transformation can be easily performed.

参考文献

[1]
(a) Muller K.; Faeh C.; Diederich F. Science 2007, 317, 1881.
[1]
(b) Purser S.; Moore P. R.; Swallow S.; Gouverneur V. Chem. Soc. Rev. 2008, 37, 320.
[1]
(c) Huchet Q. A.; Kuhn B.; Wagner B.; Fischer H.; Kansy M.; Zimmerli D.; Carreira E. M.; Muller K. J. Fluorine Chem. 2013, 152, 119.
[1]
(d) Wang J.; Sanchez-Rosello M.; Acena J. L.; Pozo C.; Sorochinsky A. E.; Fustero S.; Soloshonok V. A.; Liu H. Chem. Rev. 2014, 114, 2432.
[2]
Purser S.; Moore P. R.; Swallow S.; Gouverneur V. Chem. Soc. Rev. 2008, 37, 320.
[3]
(a) Merino E.; Nevado C. Chem. Soc. Rev. 2014, 43, 6598.
[3]
(b) Charvillat T.; Bernardelli P.; Daumas M.; Pannecoucke X.; Ferey V.; Besset T. Chem. Soc. Rev. 2021, 50, 8178.
[4]
(a) Charpentier J.; Früh N.; Togni A. Chem. Rev. 2015, 115, 650.
[4]
(b) Yang X.; Wu T.; Phipps R. J.; Toste F. D. Chem. Rev. 2015, 115, 826.
[4]
(c) Xiao H.; Zhang Z.; Fang Y.; Zhu L.; Li C. Chem. Soc. Rev. 2021, 50, 6308.
[4]
(d) Chen J.-Y.; Huang J.; Sun K.; He W.-M. Org. Chem. Front. 2022, 9, 1152.
[5]
(a) Yu L.; Dai A.; Zhang W.; Liao A.; Guo S.; Wu J. J. Agric. Food Chem. 2022, 70, 10693.
[5]
(b) Westphal R.; Filho E. V.; Medici F.; Benaglia M.; Greco S. J. Synthesis 2022, 54, 2927.
[5]
(c) Ding A.; Meazza M.; Guo H.; Yang J. W.; Rios R. Chem. Soc. Rev. 2018, 47, 5946.
[6]
(a) Kong W.; Merino E.; Nevado C. Angew. Chem., Int. Ed. 2014, 53, 5078.
[6]
(b) Tang S.; Yuan L.; Li Z.-Z.; Peng Z.-Y.; Deng Y.-L.; Wang L.-N.; Huang G.-X.; Sheng R.-L. Tetrahedron Lett. 2017, 58, 2127.
[6]
(c) Yuan L.; Jiang S.-M.; Li Z.-Z.; Zhu Y.; Yu J.; Li L.; Li M.-Z.; Tang S.; Sheng R.-R. Org. Biomol. Chem. 2018, 16, 2406.
[6]
(d) Li C.; Zhao Y.; Zhou J.; Wang X.; Hou J.; Song Y.; Liu W.; Han G. Org. Biomol. Chem. 2020, 18, 8376.
[6]
(e) Peng C.-C.; Wu L.-J.; Pi S.-F. Org. Biomol. Chem. 2021, 19, 7602.
[6]
(f) Peng C.-C.; Long F.; Hu Y.-C.; Zhou Z.-R.; Zhang K.-Y.; Wang R.; Ye M.-H.; Xiao H.-B.; Wu L.-J. J. Org. Chem. 2022, 87, 2740.
[6]
(g) Tang J.; Luo W.; Zhou J. Chin. J. Org. Chem. 2023, 43, 3006. (in Chinese)
[6]
( 唐菁, 罗文坤, 周俊, 有机化学, 2023, 43, 3006.)
[7]
(a) Kong W. Q.; Casimiro M.; Fuentes N.; Merino E.; Nevado C. Angew. Chem., Int. Ed. 2013, 52, 13086.
[7]
(b) Han G.; Liu Y.; Wang Q. Org. Lett. 2014, 16, 3188.
[7]
(c) Wu J.; Ma D.; Tang G.; Zhao Y. Org. Lett. 2019, 21, 7674.
[7]
(d) Zhang Z.; Tang X.-J.; Dolbier W. R., Jr. Org. Lett. 2016, 18, 1048.
[7]
(e) Zhao Y.; Wang X.; Yao R.; Li C.; Xu Z.; Zhang L.; Han G.; Hou J.; Liu Y.; Song Y. Adv. Synth. Catal. 2022, 364, 637.
[7]
(f) Tang S.; Yuan L.; Li Z.-Z.; Peng Z.-Y.; Deng Y.-L.; Wang L.-N.; Huang G.-X.; Sheng R.-L. Tetrahedron Lett. 2017, 58, 2127.
[8]
(a) Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230.
[8]
(b) Wiebe A.; Gieshoff T.; M?hle S.; Rodrigo E.; Zirbes M.; Waldvogel S. R. Angew. Chem., Int. Ed. 2018, 57, 5594.
[8]
(c) Jiang Y.; Xu K.; Zeng C. Chem. Rev. 2018, 118, 4485.
[8]
(d) Yuan Y.; Lei A. Acc. Chem. Res. 2019, 52, 3309.
[8]
(e) Xiong P.; Xu H.-C. Acc. Chem. Res. 2019, 52, 3339.
[8]
(f) Feng E.-Q.; Hou Z.-W.; Xu H.-C. Chin. J. Org. Chem. 2019, 39, 1424. (in Chinese)
[8]
( 冯恩祺, 侯中伟, 徐海超, 有机化学, 2019, 39, 1424.)
[8]
(g) Tang H.; Pan Y. Chin. J. Org. Chem. 2021, 41, 435. (in Chinese)
[8]
( 唐海涛, 潘英明, 有机化学, 2021, 41, 435.)
[8]
(h) Meng W.; Xu K.; Guo B.; Zeng C. Chin. J. Org. Chem. 2021, 41, 2621. (in Chinese)
[8]
( 孟薇, 徐坤, 郭兵兵, 曾程初, 有机化学, 2021, 41, 2621.)
[8]
(i) Chen N.; Xu H.-C. Green Synth. Catal. 2021, 2, 165.
[8]
(j) Wu Y.; Chen J.-Y.; Liao H.-R.; Shu X.-R.; Duan L.-L.; Yang X.-F.; He W.-M. Green Synth. Catal. 2021, 2, 233.
[8]
(k) Luo M.-J.; Xiao Q.; Li J.-H. Chem. Soc. Rev. 2022, 51, 7206.
[8]
(l) Hou Z.-W.; Xu H.-C.; Wang L. Curr. Opin. Electrochem. 2022, 34, 100988.
[8]
(m) Cheng X.; Lei A.; Mei T.-S.; Xu H.-C.; Xu K.; Zeng C. CCS Chem. 2022, 4, 1120.
[8]
(n) Wan Q.; Zhang Z.; Hou Z.-W.; Wang L. Org. Chem. Front. 2023, 10, 2830.
[8]
(o) Zhou X.-Q.; Tang H.-T.; Cui F.-H.; Liang Y.; Li S.-H.; Pan Y.-M. Green Chem. 2023, 25, 5024.
[8]
(p) Tang H.-T.; Pan Y.-Z.; Pan Y.-M. Green Chem. 2023, 25, 8313.
[9]
(a) Bhaskaran R. P.; Babua B. P. Adv. Synth. Catal. 2020, 362, 5219.
[9]
(b) Kisukuri C. M.; Fernandes V. A.; Delgado J. A. C.; H?ring A. P.; Paix?o M. W.; Waldvogel S. R. Chem. Rec. 2021, 21, 2502.
[10]
(a) Fujiwara Y.; Dixon J. A.; O’Hara F.; Funder E. D.; Dixon D. D.; Rodriguez R. A.; Baxter R. D.; Herle B.; Sach N.; Collins M. R.; Ishihara Y.; Baran P. S. Nature 2012, 492, 95.
[10]
(b) Dou G. Y.; Jiang Y. Y.; Xu K.; Zeng C. C. Org. Chem. Front. 2019, 6, 2392.
[11]
(a) Zhang L.; Zhang G.; Wang P.; Li Y.; Lei A. Org. Lett. 2018, 20, 7396.
[11]
(b) Ye K.-Y.; Pombar G.; Fu N.; Sauer G. S.; Keresztes I.; Lin S. J. Am. Chem. Soc. 2018, 140, 2438.
[11]
(c) Jiang Y.-Y.; Dou G.-Y.; Xu K.; Zeng C.-C. Org. Chem. Front. 2018, 5, 2573.
[11]
(d) Ruan Z. X.; Huang Z. X.; Xu Z. N.; Mo G. Q.; Tian X.; Yu X. Y.; Ackermann L. Org. Lett. 2019, 21, 1237.
[11]
(e) Zou Z.; Zhang W.; Wang Y.; Kong L.; Karotsis G.; Wang Y.; Pan Y. Org. Lett. 2019, 21, 1857.
[11]
(f) Zhang Z.; Zhang L.; Cao Y.; Li F.; Bai G.; Liu G.; Yang Y.; Mo F. Org. Lett. 2019, 21, 762.
[11]
(g) Li Z.; Jiao L.; Sun Y.; He Z.; Wei Z.; Liao W.-W. Angew. Chem., Int. Ed. 2020, 59, 7266.
[11]
(h) Chen S.-J.; Zhong W.-Q.; Huang J.-M. J. Org. Chem. 2023, 88, 12630.
[11]
(i) Chen X.; Jiang J.; Huang X.-J.; He W.-M. Org. Chem. Front. 2023, 10, 3898.
[11]
(j) Lei Z.-L.; Liu T.-C.; Cui F.-H.; Pan Y.-M.; Li S.-H.; Tang H.-T. Org. Lett. 2023, 25, 6001.
[12]
Arai K.; Watts K.; Wirth T. ChemistryOpen 2014, 3, 23.
[13]
(a) Xiong P.; Xu H.-H.; Song J.; Xu H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
[13]
(b) Xu H.-H.; Song J.; Xu H.-C. ChemSusChem 2019, 12, 3060.
[13]
(c) Wang H.; Xie Y.; Zhou Y.; Cen N.; Chen W. Chin. Chem. Lett. 2022, 33, 221.
[13]
(d) Sui D.; Cen N.; Gong R.; Chen Y.; Chen W. Chin. J. Org. Chem. 2023, 43, 3239. (in Chinese)
[13]
岁丹丹, 岑南楠, 龚若蕖, 陈阳, 陈文博, 有机化学, 2023, 43, 3239.
[14]
Lübbesmeyer M.; Leifert D.; Sch?fer H.; Studer A. Chem. Commun. 2018, 54, 2240.
[15]
(a) Jud W.; Maljuric S.; Kappe C. O.; Cantillo D. Org. Lett. 2019, 21, 7970.
[15]
(b) Rodrigo S.; Um C.; Mixdorf J. C.; Gunasekera D.; Nguyen H. M.; Luo L. Org. Lett. 2020, 22, 6719.
[16]
Hossain Md. J.; Ono T.; Wakiya K.; Hisaeda Y. Chem. Commun. 2017, 53, 10878.
[17]
Guo Y.; Wang R.; Song H.; Liu Y.; Wang Q. Chem. Commun. 2021, 57, 8284.
[18]
(a) Li L.; Hou Z.-W.; Li P.; Wang L. J. Org. Chem. 2022, 87, 8697.
[18]
(b) Lv Y.; Hou Z.-W.; Wang Y.; Li P.; Wang L. Org. Biomol. Chem. 2023, 21, 1014.
[18]
(c) Zhang Z.; Hou Z.-W.; Chen H.; Li P.; Wang L. Green Chem. 2023, 25, 3543.
[18]
(d) Zhang Z.; Zhang W.; Hou Z.-W.; Li P.; Wang L. J. Org. Chem. 2023, 88, 13610.
[18]
(e) He H.; Wan Q.; Hou Z.-W.; Zhou Q.; Wang L. Org. Lett. 2023, 25, 7014.
[18]
(f) Zhao X.-R.; Zhang Y.-C.; Hou Z.-W.; Wang L. Chin. J. Chem. 2023, 41, 2963.
[18]
(g) He H.; Lv Y.; Hu J.; Hou Z.-W.; Wang L. Green Chem. 2024, DOI: 10.1039/D3GC04061E.
[19]
(a) Nair A. M.; Halder I.; Khan S.; Volla C. M. R. Adv. Synth. Catal. 2020, 362, 224.
[19]
(b) Reddy C. R.; Ajaykumar U.; Kolgave D. H.; Ramesh R. J. Org. Chem. 2023, 88, 7117.
文章导航

/