苯并唑-氮杂环卡宾钯配合物的合成表征及应用
收稿日期: 2023-11-14
修回日期: 2024-01-29
网络出版日期: 2024-02-28
基金资助
国家自然科学基金(22071171); 浙江省自然科学基金(LZ22B020003)
Syntheses and Structural Characterizations of Benzoxazolyl N-Heterocyclic Carbene-Palladium Complexes and Their Applications
Received date: 2023-11-14
Revised date: 2024-01-29
Online published: 2024-02-28
Supported by
National Natural Science Foundation of China(22071171); Natural Science Foundation of Zhejiang Province(LZ22B020003)
合成了6个具有柔性直链烷基或苄基连接体的七元苯并噁唑-氮杂环卡宾钯的新配合物, 用NMR, HRMS, FTIR等对其构进行了表征, 并用X射线单晶衍射进一步确认了其中3个配合物的结构. 晶体解析显示钯配位中心是稍微扭曲的平面四边形构型, 其配体中苯并噁唑和氮杂环卡宾平面互成一定角度, 不共平面. 氮杂环卡宾片段相连的第一个亚甲基上的偕二氢在配合物中表现磁各向异性, 亚甲基偕二氢化学位移差(Δδg)随侧链长度增长而变化, 侧链为四个碳的直链烷基时, Δδg最大. 催化活性应用研究显示, 此类配合物对Suzuki-Miyaura反应具有优异的催化活性, 并且可应用于两步一锅法合成联苯类偕二氟烯烃化合物.
关键词: 氮杂环卡宾钯; Suzuki-Miyaura偶联; 偕二氟烯烃
孙超 , 周泉 , 李传莹 , 王磊 . 苯并唑-氮杂环卡宾钯配合物的合成表征及应用[J]. 有机化学, 2024 , 44(6) : 1957 -1966 . DOI: 10.6023/cjoc202311013
Six seven-membered benzoxazolyl N-heterocyclic carbene (Benzoxa^NHC) palladium complexes with flexible linear alkyl or benzyl linkers were synthesized. Their structures were characterized by NMR, HRMS, and FTIR spectroscopies. The structures of three complexes were further confirmed by X-ray single crystal diffraction. Palladium center adopted slight distorted square planer geometry, and the benzoxazole and NHC planes in its ligand formed a certain angle with each other, not coplanar. The first methylene group connected to a nitrogen-containing heterocyclic carbene fragment exhibited magnetic anisotropy in the complex. The shift difference in the methylene group (Δδg) changed with the increase of the length of the side chain. When the side chain was a linear chain alkyl group of four carbons, Δδg reched maximum. Furthermore, these complexes showed excellent catalytic performance in Suzuki-Miyaura coupling, and could be used to synthesize biphenyl gem-difluoroethenes in the manner of two steps in one pot.
| [1] | Arduengo, A. J. III; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361. |
| [2] | (a) Nolan, S. P. Angew. Chem., Int. Ed. 2015, 127, 5916. |
| [2] | (b) Anju, P. J.; Neetha, M.; Anilkumar, G. ChemistrySelect 2022, 7, e202103564. |
| [2] | (c) Budagumpi, S.; Haque, R. A.; Salman, A. W. Coord. Chem. Rev. 2012, 256, 1787. |
| [2] | (d) Gautam, A.; Shahini, C. R.; Siddappa, A. P.; Jan Grzegorz, M.; Hemavathi, B.; Ahipa, T. N.; Srinivasa, B. J. Organomet. Chem. 2021, 934, 121540. |
| [2] | (e) Astakhov, A. V.; Khazipov, O. V.; Chernenko, A. Y.; Pasyukov, D. V.; Kashin, A. S.; Gordeev, E. G.; Khrustalev, V. N.; Chernyshev, V. M.; Ananikov, V. P. Organometallics 2017, 36, 1981. |
| [2] | (f) Shao, H.; Ma, Y.; Lin, T.; Li, W.; Deng, Q. Asian J. Org. Chem. 2023, 12, e202300064. |
| [2] | (g) Sau, S. C.; Hota, P. K.; Mandal, S. K.; Soleilhavoup, M.; Bertrand, G. Chem. Soc. Rev. 2020, 49, 1233. |
| [2] | (h) Li, J.; He, D.; Lin, Z.; Wu, W.; Jiang, H. Org. Chem. Front. 2021, 8, 3502. |
| [3] | Würtz, S.; Lohre, C.; Fr?hlich, R.; Bergander, K.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 8344. |
| [4] | Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. J. Am. Chem. Soc. 2004, 126, 15195. |
| [5] | Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485. |
| [6] | Gyton, M. R.; Leforestier, B.; Chaplin, A. B. Organometallics 2018, 37, 3963. |
| [7] | (a) Luo, W.-Q.; Du, X.-G.; Chen, L.-Y.; Jin, C.-M. J. Organometal. Chem. 2021, 952, 122033. |
| [7] | (b) Peng, H. M.; Song, G.; Li, Y.; Li, X. Inorg. Chem. 2008, 47, 8031. |
| [8] | Wang, R.; Twamley, B.; Shreeve, J. M. J. Org. Chem. 2006, 71, 426. |
| [9] | Sie, M.-H.; Hsieh, Y.-H.; Tsai, Y.-H.; Wu, J.-R.; Chen, S.-J.; Lii, J.-H.; Lee, H. M. Organometallics 2010, 29, 6473. |
| [10] | Turek, J.; Panov, I.; Semler, M.; ?těpni?ka, P.; De Proft, F.; Padělková, Z.; R??i?ka, A. Organometallics 2014, 33, 3108. |
| [11] | (a) Ammar, H. B.; Hassine, B. B.; Fischmeister, C.; Dixneuf, P. H.; Bruneau, C. Eur. J. Inorg. Chem. 2010, 2010, 4752. |
| [11] | (b) Hoffmann, M.; Dagorne, S.; Pale, P.; Blanc, A.; de Frémont, P. J. Organomet. Chem. 2022, 979, 122507. |
| [11] | (c) Herrmann, W. A.; Goossen, L. J.; Spiegler, M. Organometallics 1998, 17, 2162. |
| [12] | (a) El Hatimi, A.; Gómez, M.; Jansat, S.; Muller, G.; Font-Bardía, M.; Solans, X. J. Chem. Soc., Dalton Trans. 1998, 4229. |
| [12] | (b) Viciano, M.; Feliz, M.; Corberán, R.; Mata, J. A.; Clot, E.; Peris, E. Organometallics 2007, 26, 5304. |
| [12] | (c) Wanniarachchi, Y. A.; Kogiso, Y.; Slaughter, L. M. Organometallics 2008, 27, 21. |
| [13] | Huang, S.; Hong, X.; Cui, H.-Z.; Zhan, B.; Li, Z.-M.; Hou, X.-F. Organometallics 2020, 39, 3514. |
| [14] | (a) Huang, S.; Wu, S.-P.; Zhou, Q.; Cui, H.-Z.; Hong, X.; Lin, Y.-J.; Hou, X.-F. J. Organomet. Chem. 2018, 868, 14. |
| [14] | (b) Huang, S.; Hong, X.; Cui, H.-Z.; Zhou, Q.; Lin, Y.-J.; Hou, X.-F. Dalton Trans. 2019, 48, 5072. |
| [15] | (a) Zhou, Q.; Hong, X.; Cui, H.-Z.; Huang, S.; Yi, Y.; Hou, X.-F. J. Org. Chem. 2018, 83, 6363. |
| [15] | (b) Zhou, Q.; Liu, S.; Ma, M.; Cui, H.-Z.; Hong, X.; Huang, S.; Zhang, J.-F.; Hou, X.-F. Synthesis 2018, 50, 1315. |
| [15] | (c) Shen, M. H.; Li, L. Q.; Zhou, Q.; Wang, J. H.; Wang, L. Chin. J. Org. Chem. 2023, 43, 697. (in Chinese) |
| [15] | (沈梦涵, 李来强, 周泉, 王洁慧, 王磊, 有机化学, 2023, 43, 697.) |
| [15] | (d) Zhou, Q.; Yu, H. Y.; Zhou, Y. Q.; Wei, J. R.; Wang, L. Org. Biomol. Chem. 2022, 20, 5575. |
| [16] | Almy, J.; Martinez Alverez, R.; Fernandez, A. H.; Vazquez, A. S. J. Chem. Educ. 1997, 74, 1479. |
| [17] | Minghetti, G.; Cinellu, M. A.; Bandini, A. L.; Banditelli, G.; Demartin, F.; Manassero, M. J. Organometal. Chem. 1986, 315, 387. |
| [18] | Sugiyama, T.; Meng, J.; Matsuura, T. Acta Crystallogr.,Sect. C: Struct. Chem. 2002, 58, o242. |
| [19] | Chen, W.; Chen, K.; Chen, W.; Liu, M.; Wu, H. ACS Catal. 2019, 9, 8110. |
| [20] | Zhou, J.; Luo, S.; Liu, H.; Xue, P. J. Organomet. Chem. 2022, 965-966, 122323. |
| [21] | Pauling, L. J. Chem. Educ. 1992, 69, 519. |
| [22] | Sugiyama, T.; Meng, J. B.; Matsuura, T. Acta Crystallogr., Sect. C: Struct. Chem. 2002, 58, 242. |
| [23] | Chakrabortty, S.; Kaur, M.; Adhikari, M.; Manar, K. K.; Singh, S. Inorg. Chem. 2021, 60, 6209. |
| [24] | (a) Pan, S.; Song, M.; Zuo, L.; Geng, X.; Wang, L. J. Org. Chem. 2023, 88, 5586. |
| [24] | (b) Xu, Z.; Geng, X.; Cai, Y.; Wang, L. J. Org. Chem. 2022, 87, 6562. |
| [24] | (c) Huo, J.; Geng, X.; Li, W.; Zhang, P.; Wang, L. Org. Lett. 2023, 25, 512. |
| [24] | (d) Zhang, J.-Q.; Hu, D.; Wang, J.; Ni, B.; Ren, H. Org. Lett. 2022, 24, 7905. |
| [24] | (e) Zhang, J.-Q.; Liu, J.; Hu, D.; Song, J.; Zhu, G.; Ren, H. Org. Lett. 2022, 24, 786. |
| [24] | (f) Hou, Z.-W.; Jiang, T.; Wu, T.-X.; Wang, L. Org. Lett. 2021, 23, 8585. |
| [24] | (g) Li, J.-S.; Liu, Y.-J.; Zhang, G.-W.; Ma, J.-A. Org. Lett. 2017, 19, 6364. |
| [24] | (h) Pan, Z.; Wang, X.; Zhao, S.; Deng, H.; Ma, M.; Xue, F. Org. Lett. 2023, 25, 6143. |
| [24] | (i) Sun, J.; Miao, T.; Li, P.; Wang, L. Chin. J. Org. Chem. 2021, 41, 3144. (in Chinese) |
| [24] | (孙佳兵, 苗涛, 李品华, 王磊, 有机化学, 2021, 41, 3144.) |
| [24] | (j) Gao, R.; Zuo, L.; Wang, F.; Li, C.; Jiang, H.; Li, P.; Wang, L. Chin. J. Org. Chem. 2022, 42, 1883. |
| [24] | (k) He, H.; Lv, Y.; Hu, J.; Hou, Z.-W.; Wang, L. Green Chem. 2024, 26, 2157. |
| [24] | (l) Sun, C.; Zhou, Q.; Li, C.-Y.; Hou, Z.-W.; Wang, L. Org. Lett. 2024, 26, 883. |
| [24] | (m) Zhang, Z.; Zhou, Y.; Wang, J.; Zhang, Y.; Wang, L.; Liu, J.; Zhou, C.; Wang, M.; Li, P. Org. Biomol. Chem. 2024, 22, 1708. |
| [24] | (n) Hou, Z.-W.; Xu, H.-C.; Wang, L. Curr. Opin. Electrochem. 2024, 44, 101447. |
| [25] | Sakaguchi, H.; Uetake, Y.; Ohashi, M.; Niwa, T.; Ogoshi, S.; Hosoya, T. J. Am. Chem. Soc. 2017, 139, 12855. |
| [26] | King, R. P.; Krska, S. W.; Buchwald, S. L. Org. Lett. 2021, 23, 7927. |
| [27] | (a) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339. |
| [27] | (b) Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Acta Crystallogr.,Sect. A: Found. Adv. 2015, 71, 59. |
| [28] | Sheldrick, G. M. Acta Crystallogr.,Sect. C: Struct. Chem. 2015, 71, 3. |
/
| 〈 |
|
〉 |