电化学促进2,2,6,6-四甲基哌啶氧化物(TEMPO)介导的甘氨酸衍生物氧化脱氢Povarov/串联反应
收稿日期: 2024-01-04
修回日期: 2024-02-28
网络出版日期: 2024-03-05
基金资助
中国科学院战略性先导科技专项(XDB0610000); 国家重点研发项目(2021YFA1500100); 国家自然科学基金(21821002); 国家自然科学基金(91956112); 国家自然科学基金(22101294); 上海市科学技术委员会(21ZR1476500); 上海市科学技术委员会(20XD1425100); 宁波市自然科学基金(2023J035)
Electrochemistry-Enabled 2,2,6,6-Tetramethylpiperidoxyl (TEMPO)-Mediated Oxidative Dehydrogenation Povarov/Tandem Reactions of Glycine Derivatives
Received date: 2024-01-04
Revised date: 2024-02-28
Online published: 2024-03-05
Supported by
Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0610000); National Key R&D Program of China(2021YFA1500100); National Natural Science Foundation of China(21821002); National Natural Science Foundation of China(91956112); National Natural Science Foundation of China(22101294); Science and Technology Commission of Shanghai Municipality of Shanghai(21ZR1476500); Science and Technology Commission of Shanghai Municipality of Shanghai(20XD1425100); Natural Science Foundation of Ningbo(2023J035)
研究了电化学氧化甘氨酸衍生物与烯烃之间的氧化脱氢Povarov/串联反应, 其中氮氧自由基2,2,6,6-四甲基哌啶氧化物(TEMPO)作为媒介降低了电化学反应的电位, 避免了某些富电子的芳胺在较高电位下的过氧化. 它为甘氨酸衍生物的氮-α位官能团化提供了潜在的途径, 并通过Shono氧化与Povarov反应的结合, 开发了一种在温和条件下高产率合成喹啉衍生物的有效方法.
关键词: 电化学; 2,2,6,6-四甲基哌啶氧化物(TEMPO); Povarov反应; Shono氧化
李章健 , 王振华 , 郭剑峰 , 方萍 , 马聪 , 刘润华 , 梅天胜 . 电化学促进2,2,6,6-四甲基哌啶氧化物(TEMPO)介导的甘氨酸衍生物氧化脱氢Povarov/串联反应[J]. 有机化学, 2024 , 44(3) : 940 -950 . DOI: 10.6023/cjoc202401002
The oxidative dehydrogenation Povarov/tandem reaction between electrochemically oxidized glycine derivatives and olefins was investigated. Specifically, a nitrogen oxide radical 2,2,6,6-tetramethylpiperidoxyl (TEMPO) was used as a redox mediator to reduce the potential of the electrochemical reaction and avoid over-oxidation of electron-rich aromatic amines at higher potentials. The reaction provides a potential pathway for the nitrogen-α functionalization of glycine derivatives. Further, the reaction represents an efficient method for synthesizing quinoline derivatives under mild conditions to achieve high yields through a combination of Shono oxidation and Povarov reactions.
| [1] | (a) Ma C.; Fang P.; Mei T.-S. ACS Catal. 2018, 8, 7179. |
| [1] | (b) Yuan Y.; Lei A. Acc. Chem. Res. 2019, 52, 3309. |
| [1] | (c) Xiong P.; Xu H.-C. Acc. Chem. Res. 2019, 52, 3339. |
| [1] | (d) Roeckl J. L.; Pollok D.; Franke R.; Waldvogel R. S. Acc. Chem. Res. 2020, 53, 45. |
| [1] | (e) Zhu C.; Ang N. W. J.; Meyer T. H.; Qiu Y.; Ackermann L. ACS Cent. Sci. 2021, 7, 415. |
| [1] | (f) Malapit C.; Minteer S. D. Chem. Rev. 2022, 122, 3180. |
| [1] | (g) Zhang X.; Zhan J.; Yu Z.; Deng J.; Li M.; Shao Y. Chin. J. Chem. 2023, 41, 214. |
| [1] | (h) Zeng L.; Qin J.-H.; Lv G.-F.; Hu M.; Sun Q.; Ouyang X.-H.; He D.-L.; Li J.-H. Chin. J. Chem. 2023, 41, 1921. |
| [2] | (a) Kingston C.; Palkowitz M. D.; Kawamata Y.; Baran P. S. Acc. Chem. Res. 2020, 53, 72. |
| [2] | (b) Wang F.; Stahl S. Acc. Chem. Res. 2020, 53, 561. |
| [2] | (c) Pollok D.; Waldvogel S. R. Chem. Sci. 2020, 11, 12386. |
| [2] | (d) Siu J. C.; Fu N. K.; Lin S. Acc. Chem. Res. 2020, 53, 547. |
| [2] | (e) Zhu C.; Ang N. W. J.; Meyer T.-H.; Qiu Y.; Ackermann L. ACS Cent. Sci. 2021, 7, 415. |
| [2] | (f) Wang Z.-H.; Ma C.; Fang P.; Xu H.-C.; Mei T.-S. Acta Chim. Sinica 2022, 80, 1115. (in Chinese) |
| [2] | ( 王振华, 马聪, 方萍, 徐海超, 梅天胜, 化学学报, 2022, 80, 1115.) |
| [2] | (g) Cheng X.; Lei A.; Mei T.-S.; Xu H.-C.; Xu K.; Zeng C. CCS Chem. 2022, 4, 1120. |
| [3] | (a) Shono T.; Hamaguchi H.; Matsumura Y. J. Am. Chem. Soc. 1975, 97, 4264. |
| [3] | (b) Shono T.; Matsumura Y.; Uchida K.; Tsubata K.; Makino A. J. Org. Chem. 1984, 49, 300. |
| [3] | (c) Onomura O. Heterocycles 2012, 85, 2111. |
| [3] | (d) Jones A. M.; Banks C. E. Beilstein J. Org. Chem. 2014, 10, 3056. |
| [3] | (e) Fu N.; Li L.; Yang Q.; Luo S. Org. Lett. 2017, 19, 2122. |
| [3] | (f) K?rk?s M. D. Chem. Soc. Rev. 2018, 47, 5786. |
| [3] | (g) Wang F.; Rafiee M.; Stahl S. S. Angew. Chem., Int. Ed. 2018, 57, 6686. |
| [3] | (h) Lennox A. J. J.; Goes S. L.; Webster M. P.; Koolman H. F.; Djuric S. W.; Stahl S. S. J. Am. Chem. Soc. 2018, 140, 11227. |
| [3] | (i) Feng T.; Wang S.; Qiu Y. Synlett 2022, 33, 1582. |
| [3] | (j) Novaes L. F. T.; Ho J. S. K.; Mao K.; Liu K.; Tanwar M.; Neurock M.; Villemure E.; Terrett J. A.; Lin S. J. Am. Chem. Soc. 2022, 144, 1187. |
| [4] | (a) Povarov L, S.; Mikhailov B, M. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1963, 953. |
| [4] | (b) Povarov L, S.; Mikhailov B, M. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1963, 2039. |
| [4] | (c) Povarov L. S. Chem. Rev. 1967, 36, 656. |
| [4] | (d) Makioka Y.; Shindo T.; Taniguchi Y.; Takaki K.; Fujiwara F. Synthesis 1995, 1995, 801. |
| [4] | (e) Mariafrancesca F.; Lorenzo C.; Luca B. Synthesis 2014, 46, 135. |
| [5] | (a) Francke R.; Little R. D. Chem. Soc. Rev. 2014, 43, 2492. |
| [5] | (b) Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230. |
| [5] | (c) Masdeu C.; Palacios F.; Alonso C. Top. Curr. Chem. 2023, 381, 20. |
| [6] | (a) Povarov L. S.; Mikhailov B. M.; Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1963, 953. |
| [6] | (b) Murata S.; Miura M.; Nomura M. J. Org. Chem. 1989, 54, 4700. |
| [6] | (c) Murahashi S, I.; Naota T.; Miyaguchi N.; Nakato T. Tetrahedron Lett. 1992, 33, 6991. |
| [6] | (d) Araneo S.; Fontana F.; Minisci F.; Recupero F.; Serri A. Tetrahedron Lett. 1995, 36, 4307. |
| [6] | (e) Huang L. H.; Zhang X. B.; Zhang Y. H. Org. Lett. 2009, 11, 3730. |
| [6] | (f) Nishino M.; Hirano K.; Satoh T.; Miura M. J. Org. Chem. 2011, 76, 6447. |
| [6] | (g) Zhu S, Q.; Das A.; Bui L.; Zhou H. J.; Curran D. P.; Rueping M. J. Am. Chem. Soc. 2013, 135, 1823. |
| [6] | (h) Zhao L.; Basl? O.; Li C.-J. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 4106. |
| [7] | (a) Richter H.; García Manche?o O. Org. Lett. 2011, 13, 6066. |
| [7] | (b) Rohlmann R.; Stopka T.; Richter H.; García Manche?o O. J. Org. Chem. 2013, 78, 6050. |
| [8] | (a) Jia X.; Peng F.; Qing C.; Huo C.; Wang X. Org. Lett. 2012, 14, 4030. |
| [8] | (b) Jia X.; Wang Y.; Peng F.; Huo C.; Yu L.; Liu J.; Wang X. J. Org. Chem. 2013, 78, 9450. |
| [8] | (c) Liu P.; Wang Z.; Lin J.; Hu X. Eur. J. Org. Chem. 2012, 2012, 1583. |
| [8] | (d) Huo C.; Yuan Y.; Wu M.; Jia X.; Wang X.; Chen F.; Tang J. Angew. Chem., Int. Ed. 2014, 126, 13762. |
| [8] | (e) Huo C.; Xie H, S.; Wu M, X.; Jia X, D.; Wang X.; Tang J. Chem.-Eur. J. 2015, 21, 5723. |
| [9] | (a) Xie Z. Y.; Jia J.; Liu X. G.; Liu L. Adv. Synth. Catal. 2016, 358, 919. |
| [9] | (b) Ni M.; Zhang Y.; Gong T.; Feng B. Adv. Synth. Catal. 2017, 359, 824. |
| [9] | (c) Yang X.; Li Y.; Li Y.; Zhang Y. J. Org. Chem. 2016, 81, 12433. |
| [9] | (d) Wang S.; Ye Y.; Hu Y.; Meng M.; Liu Z.; Liu J.; Chen K.; Zhang Z.; Zhang Y. Chem. Commun. 2023, 59, 2628. |
| [10] | (a) Wang Z.-H.; Gao P.-S.; Wang X.; Gao J.-Q.; Xu X.-T.; He Z.; Ma C.; Mei T.-S. J. Am. Chem. Soc. 2021, 143, 15599. |
| [10] | (b) Gao J.-Q.; Weng X.-J.; Ma C.; Xu X.-T.; Fang P.; Mei T.-S. Chin. J. Org. Chem. 2021, 41, 3223. (in Chinese) |
| [10] | ( 高君青, 翁信军, 马聪, 徐学涛, 方萍, 梅天胜, 有机化学, 2021, 41, 3223.) |
| [10] | (c) Gao P.-S.; Weng X.-J.; Wang Z.-H.; Zheng C.; Sun B.; Chen Z.-H.; You S.-L.; Mei T.-S. Angew. Chem., Int. Ed. 2020, 59, 15254. |
| [10] | (d) Liu H.-L.; He Z.; Wang N.-N.; Xu H.; Fang P.; Mei T.-S. Org. Lett. 2023, 25, 608. |
| [10] | (e) He Z.; Liu H.-L.; Wang Z.-H.; Jiao K.-J.; Li Z.-M.; Li Z.-J.; Fang P.; Mei T.-S. J. Org. Chem. 2023, 88, 6203. |
| [11] | (a) James M.; Ramesh V.; Claudia B.; Robert Y.; Lorraine J.-B. Org. Biomol. Chem. 2014, 12, 255. |
| [11] | (b) Wang J.; Li L.; Guo Y.; Li S.; Wang S.; Li Y.; Zhang Y. Org. Biomol. Chem. 2020, 18, 8179. |
| [11] | (c) Jaideep B.; Abubakar W.;Sadhana, S.; Imam, R, S.; Manoj, K.; Ram, A, V.; Ajay, K.; Sandip B. Org. Biomol. Chem. 2014, 12, 6267. |
| [11] | (d) Heinrich R.; Mancheno G. Org. Lett. 2011, 13, 6066. |
| [11] | (e) Yang X.; Li L.; Li Y.; Zhang Y. J. Org. Chem. 2016, 81, 12433. |
| [11] | (f) Huang H.; Jiang H.; Chen K.; Liu H. J. Org. Chem. 2009, 74, 5476. |
/
| 〈 |
|
〉 |