电化学不对称合成反应的研究进展
收稿日期: 2024-02-03
修回日期: 2024-03-02
网络出版日期: 2024-03-05
基金资助
国家自然科学基金(22007028); 河南省自然科学基金(232300421126); 河南师范大学科研启动经费(5101039170920); 大学生创新创业训练计划(202310476058); 大学生创新创业训练计划(202310476055)
Advances in Asymmetric Electrochemical Synthesis
Received date: 2024-02-03
Revised date: 2024-03-02
Online published: 2024-03-05
Supported by
National Natural Science Foundation of China(22007028); Natural Science Foundation of Henan Province(232300421126); Henan Normal University Initiation Fund(5101039170920); College Students Innovative Entrepreneurial Training Plan Program(202310476058); College Students Innovative Entrepreneurial Training Plan Program(202310476055)
不对称合成是有机化学最重要和最有价值的前沿领域之一. 近年来, 随着有机电化学的复兴和蓬勃发展, 利用电化学的优势, 拓展不对称催化的反应类型、活化模式、成键体系以及底物的适用范围, 为完成传统化学难以实现或者无法实现的不对称转化带来新的契机. 因此, 发展新型、高效、精准和可持续的电化学不对称合成策略, 具有重要的研究意义. 尽管具有诸多优势并取得了关键进展, 不对称电化学合成依然极具挑战性, 高对映选择性电化学转化的例子报道相对较少. 近年来, 国内外有机化学领域的学者们在电化学不对称催化领域开展了一系列原创性的研究工作, 取得了令人瞩目的成果. 全面梳理了过渡金属、有机小分子、生物酶、手性电极、手性电解质、手性溶剂和手性辅助剂参与的不对称电化学合成及其相关的反应机理; 概述了不对称有机电化学合成领域的理论创新、技术突破和困难挑战; 并展望了该领域的未来发展趋势.
高淳 , 刘欣 , 王明慧 , 刘淑贤 , 朱婷婷 , 张怡康 , 郝二军 , 杨启亮 . 电化学不对称合成反应的研究进展[J]. 有机化学, 2024 , 44(3) : 673 -727 . DOI: 10.6023/cjoc202402005
Asymmetric synthesis is one of the most important and valuable frontiers in exploratory research of synthetic organic chemistry. With the renaissance and vigorous development of organic electrochemistry in recent years, combining electrochemical organic synthesis and asymmetric catalytic strategies can be used to expand the reaction types, activation modes, bond formation systems, and substrate adaptability of asymmetric catalysis using the benefits of organic electrochemistry, which brought new opportunities for the asymmetric transformation that is difficult or impossible to be achieved by traditional methods. Thus, the development of novel, efficient, precise and sustainable electrochemical asymmetric catalytic strategies under mild and eco-friendly conditions is of great research significance. Although there are many advantages and key advances in asymmetric electrocatalysis, major challenges remain. Until now, relatively few examples of asymmetric electrochemical transformations with high enantioselectivity have been reported. In recent years, scholars in the field of organic chemistry around the world have carried out a series of original works in the field of asymmetric electro- chemical catalysis, and achieved remarkable results. The theoretical innovation, technical breakthrough, and difficult challenges in asymmetric electrochemical synthesis in recent decades are summarized. Examples of enantioselective electro-organic synthesis using transition metal catalysts, organocatalysts, biological enzyme catalysts, chemically modified chiral electrodes, chiral electrolytes, chiral solvents and chiral auxiliaries are discussed, along with their related reaction machanistic aspects. Finally, perspectives on this cutting-edge area are also briefly discussed.
| [1] | (a) Nicholson W. J. Nat. Philos. Chem. Arts. 1800, 4, 179. |
| [1] | (b) Lund H. J Electrochem. Soc. 2002, 149, S21. |
| [2] | Faraday M. Ann. Phys.Chem. 1834, 109, 433. |
| [3] | Kolbe H. J. Prakt. Chem. 1847, 41, 137. |
| [4] | Simons J. H. J. Electrochem. Soc. 1949, 95, 47. |
| [5] | Gandeepan P.; Finger L. H.; Meyer T. H.; Ackermann L. Chem. Soc. Rev. 2020, 49, 4254. |
| [6] | Jiao K. J.; Xing Y. K.; Yang Q. L.; Qiu H.; Mei T. S. Acc. Chem. Res. 2020, 53, 300. |
| [7] | Liu S. F.; Nusrat F. Mol. Catal. 2019, 463, 16. |
| [8] | Waldvogel S. R.; Lips S.; Selt M.; Riehl B.; Kampf C. J. Chem. Rev. 2018, 118, 6706. |
| [9] | (a) Ma C.; Fang P.; Mei T.-S. ACS Catal. 2018, 8, 7179. |
| [9] | (b) Leech M. C.; Garcia A. D.; Petti A.; Dobbs A. P.; Lam K. React. Chem. Eng. 2020, 5, 977. |
| [10] | Gourley R. N.; Grimshaw J.; Millar P. G. Chem. Commun. 1967, 1278. |
| [11] | Jubault M.; Raoult E.; Peltier D. Electrochim. Acta 1977, 22, 67. |
| [12] | Watkins B. F.; Behling J. R.; Kariv E.; Miller L. L. J. Am. Chem. Soc. 1975, 97, 3549. |
| [13] | Seebach D.; Oei H. A. Angew. Chem., Int. Ed. Engl. 1975, 14, 634. |
| [14] | Horner L.; Degner D. Tetrahedron Lett. 1968, 9, 5889. |
| [15] | Li H.; Xue Y.-F.; Ge Q.; Liu M.; Cong H.; Tao Z. Mol. Catal. 2021, 499, 111296. |
| [16] | Chang X.; Zhang Q.; Guo C. Angew. Chem., Int. Ed. 2020, 59, 12612. |
| [17] | Ghosh M.; Shinde V. S.; Rueping M. Beilstein J. Org. Chem. 2019, 15, 2710. |
| [18] | Lin Q.; Li L.; Luo S. Chem.-Eur. J. 2019, 25, 10033. |
| [19] | Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230. |
| [20] | Tang S.; Liu Y.; Lei A. Chem 2018, 4, 27. |
| [21] | Cardoso D. S.; Sljukic B.; Santos D. M.; Sequeira C. A. Org. Process Res. Dev. 2017, 21, 1213. |
| [22] | Liu J.; Lu L.; Wood D.; Lin S. ACS Cent. Sci. 2020, 6, 1317. |
| [23] | Jiao K.-J.; Wang Z.-H.; Ma C.; Liu H.-L.; Cheng B.; Mei T.-S. Chem. Catal. 2022, 2, 3019. |
| [24] | Wang X.; Xu X.; Wang Z.; Fang P.; Mei T. Chin. J. Org. Chem. 2020, 40, 3738. (in Chinese) |
| [24] | ( 王向阳, 徐学涛, 王振华, 方萍, 梅天胜, 有机化学, 2020, 40, 3738.) |
| [25] | Jiang Y.; Xu K.; Zeng C. Chem. Rev. 2018, 118, 4485. |
| [26] | Margarita C.; Lundberg H. Catalysts 2020, 10, 982. |
| [27] | Chakraborty P.; Mandal R.; Garg N.; Sundararaju B. Coord. Chem. Rev. 2021, 444, 214065. |
| [28] | Rein J.; Zacate S. B.; Mao K.; Lin S. Chem. Soc. Rev. 2023, 52, 8106. |
| [29] | Park D. I.; Jung S.; Yoon H. J.; Jin K. Electrochim. Acta 2021, 397, 139271 |
| [30] | Medici F.; Resta S.; Andolina S.; Benaglia M. Catalysts 2023, 13, 944. |
| [31] | Sharpless K. B.; Amberg W.; Bennani Y. L.; Crispino G. A.; Hartung J.; Jeong K. S.; Kwong H. L.; Morikawa K. Wang Z. M. J. Org. Chem. 1992, 57, 2768. |
| [32] | Amundsen A. R.; Balko E. N. J. Appl. Electrochem. 1992, 22, 810. |
| [33] | Torii S.; Liu P.; Tanaka H. Chem. Lett. 1995, 24, 319. |
| [34] | Torii S., Liu P.; Bhuvaneswari N.; Amatore C.; Jutand A. J. Org. Chem. 1996, 61, 3055. |
| [35] | Zhang Q.-Y.; Lu P.-X.; Wang S.-L.; Li L.-X. Qu G.-R.; Guo H.-M. Org. Chem. Front. 2022, 9, 4818. |
| [36] | Guo P.; Wong K.-Y. Electrochem. Commun. 1999, 1, 559. |
| [37] | Tanaka H.; Kuroboshi M.; Takeda H.; Kanda H.; Torii S. J. Electroanal. Chem. 2001, 507, 75. |
| [38] | Zhao R.; Tang Y.; Wei S.; Xu X.; Shi X.; Zhang G. React. Kinet.,Mech. Catal. 2012, 106, 37. |
| [39] | Brown K. L. Chem. Rev. 2005, 105, 2075. |
| [40] | Randaccio L.; Geremia S.; Demitri N.; Wuerges J. Molecules 2010, 15, 3228. |
| [41] | Toraya T. Chem. Rev. 2003, 103, 2095. |
| [42] | Ohno T.; Nishioka T.; Hisaeda Y.; Murakami Y. J. Mol. Struct.: THEOCHEM 1994, 308, 207. |
| [43] | Murakami Y.; Hisaeda Y.; Ohno T.; Kohno H.; Nishioka T. J. Chem. Soc., Perkin Trans. 2 1995, 1175. |
| [44] | Feroci M.; Inesi A.; Orsini M.; Palombi L. Org. Lett. 2002, 4, 2617. |
| [45] | Feroci M.; Orsini M.; Palombi L.; Sotgiu G.; Colapietro M.; Inesi A. J. Org. Chem. 2004, 69, 487. |
| [46] | Orsini M.; Feroci M.; Sotgiu G.; Inesi A. Org. Biomol. Chem. 2005, 3, 1202. |
| [47] | Chen B.-L.; Zhu H.-W.; Xiao Y.; Sun Q.-L.; Wang H.; Lu J.-X. Electrochem. Commun. 2014, 42, 55. |
| [48] | Yao Q.-J.; Huang F.-R.; Chen J.-H.; Zhong M.-Y.; Shi B.-F. Angew. Chem., Int. Ed. 2023, 62, e202218533. |
| [49] | Yang D.; Niu J. Chin. J. Org. Chem. 2023, 43, 1887. (in Chinese) |
| [49] | ( 杨丹丹, 牛俊龙, 有机化学, 2023, 43, 1887.) |
| [50] | Zhou G.; Chen J.-H.; Yao Q.-J.; Huang F.-R.; Wang Z.-K.; Shi B.-F. Angew. Chem., Int. Ed. 2023, 62, e202302964. |
| [51] | Münchow T. V.; Dana S.; Xu Y.; Yuan B.; Ackermann L. Science 2023, 379, 1036. |
| [52] | Liu T.; Zhang W.; Xu C.; Xu Z.; Song D.; Qian W.; Lu G.; Zhang C.-J.; Zhong W.-H.; Ling F. Green Chem. 2023, 25, 3606. |
| [53] | Lin Y.; Münchow T. V.; Ackermann L. ACS Catal. 2023, 13, 9713. |
| [54] | Wang X.; Si X.-J.; Sun Y.; Wei Z.; Xu M.; Yang D.; Shi L.-L.; Song M.-P.; Niu J.-L. Org. Lett. 2023, 25, 6240. |
| [55] | Si X.-J.; Zhao X.; Wang J.; Wang X.; Zhang Y.; Yang D.; Song M.-P.; Niu J.-L. Chem. Sci. 2023, 14, 7291. |
| [56] | Li T.; Shi L.; Wang X.; Yang C.; Yang D.; Song M.-P.; Niu J.-L. Nat. Commun. 2023, 14, 5271. |
| [57] | Zhang Y.; Liu S.-L.; Li T.; Xu M.; Wang Q.; Yang D.; Song M.-P.; Niu J.-L. ACS Catal. 2024, 14, 1. |
| [58] | Gao S.; Wang C.; Yang J.; Zhang J. Nat. Commun. 2023, 14, 1301. |
| [59] | Franco D.; Riahi A.; Hénin F.; Muzart J.; Du?ach E. Eur. J. Org. Chem. 2002, 2257. |
| [60] | Ping Y.; Song H.; Kong W. Chin. J. Org. Chem. 2022, 42, 3302. (in Chinese) |
| [60] | ( 平媛媛, 宋海霞, 孔望清, 有机化学, 2022, 42, 3302.) |
| [61] | DeLano T. J.; Reisman S. E. ACS Catal. 2019, 9, 6751. |
| [62] | Qiu H.; Shuai B.; Wang Y.-Z.; Liu D.; Chen Y.-G.; Gao P.-S.; Ma H.-X.; Chen S.; Mei T.-S. J. Am. Chem. Soc. 2020, 142, 9872. |
| [63] | Han G.; Li G.; Sun Y. Nat. Catal. 2023, 6, 224. |
| [64] | Liu D.; Liu Z.-R.; Wang Z.-H.; Ma C.; Herbert S.; Schirok H.; Mei T.-S. Nat. Commun. 2022, 13, 7318. |
| [65] | Wang Y.-Z.; Wang Z.-H.; Eshel I. L.; Sun B.; Liu D.; Gu Y.-C.; Molo A.; Mei T.-S. Nat. Commun. 2023, 14, 2322. |
| [66] | Hu X.; Cheng-Sánchez I.; Cuesta-Galisteo S.; Nevado C. J. Am. Chem. Soc. 2023, 145, 6270. |
| [67] | Zhang Q.; Chang X.; Peng L.; Guo C. Angew. Chem., Int. Ed. 2019, 58, 6999. |
| [68] | Zhang Q.; Liang K.; Guo C. CCS Chem. 2021, 3, 338. |
| [69] | Zhang Q.; Liang K.; Guo C. Angew. Chem., Int. Ed. 2022, 61, e202210632. |
| [70] | Liang K.; Zhang Q.; Guo C. Sci. Adv. 2022, 8, eadd7134. |
| [71] | Liang K.; Zhang Q.; Guo C. Nat. Synth. 2023, 2, 1184. |
| [72] | Sun X.; Zhang Y.; Li T.; Li K.; Sun Q.; Wang Z. Org. Lett. 2024, 26, 1566. |
| [73] | Huang C.; Tao Y.; Cao X.; Zhou C.; Lu Q. J. Am. Chem. Soc. 2024, 146, 1984. |
| [74] | Xiong R.; Wang Y.; Zhu J.-W.; Li M.-H.; Lu J.-X.; Wang H. ChemistrySelect 2023, 8, e202301126. |
| [75] | Sun B.; Wang Z.-H.; Wang Y.-Z.; Gu Y.-C.; Ma C.; Mei T.-S. Sci. Bull. 2023, 68, 2033. |
| [76] | Zhang J.; Zhu W.; Chen Z.; Zhang Q.; Guo C. J. Am. Chem. Soc. 2024, 146, 1522. |
| [77] | Onomura O.; Arimoto H.; Matsumura Y.; Demizu Y. Tetrahedron Lett. 2007, 48, 8668. |
| [78] | Demizu Y.; Kubo Y.; Miyoshi H.; Maki T.; Matsumura Y.; Moriyama N.; Onomura O. Org. Lett. 2008, 10, 5075. |
| [79] | Fu N.; Song L.; Liu J.; Shen Y.; Siu J. C.; Lin S. J. Am. Chem. Soc. 2019, 141, 14480. |
| [80] | Song L.; Fu N.; Ernst B. G.; Lee W. H.; Frederick M. O.; DiStasio Jr R. A.; Lin S. Nat. Chem. 2020, 12, 747. |
| [81] | Gao P.-S.; Weng X.-J.; Wang Z.-H.; Zheng C.; Sun B.; Chen Z.-H.; You S.-L.; Mei T.-S. Angew. Chem., Int. Ed. 2020, 59, 15254. |
| [82] | Shen T.; Lambert T. H. Science 2021, 371, 620. |
| [83] | Zhang W.; Carpenter K. L.; Lin S. Angew. Chem., Int. Ed. 2020, 59, 409. |
| [84] | Qiu Y.; Scheremetjew A.; Finger L. H.; Ackermann L. Chem.- Eur. J. 2020, 26, 3241. |
| [85] | Yan H.; Hou Z.-W.; Xu H.-C. Angew. Chem., Int. Ed. 2019, 58, 4592. |
| [86] | Wang F.; Stahl S. S. Angew. Chem., Int. Ed. 2019, 58, 6385. |
| [87] | Tan Z.; He X.; Xu K.; Zeng C. ChemSusChem 2022, 15, e202102360. |
| [88] | Cai C.-Y.; Lai X.-L.; Wang Y.; Hu H.-H.; Song J.; Yang Y.; Wang C.; Xu H.-C. Nat. Catal. 2022, 5, 943. |
| [89] | Fan W.; Zhao X.; Deng Y.; Chen P.; Wang F.; Liu G. J. Am. Chem. Soc. 2022, 144, 21674. |
| [90] | Lai X.-L.; Chen M.; Wang Y.; Song J.; Xu H.-C. J. Am. Chem. Soc. 2022, 144, 20201. |
| [91] | Yang K.; Wang Y.; Luo S.; Fu N. Chem.-Eur. J. 2023, 29, e202203962. |
| [92] | Lai X.-L.; Xu H.-C. J. Am. Chem. Soc. 2023, 145, 18753. |
| [93] | Jiao K.-J.; Li Z.-M.; Xu X.-T.; Zhang L.-P.; Li Y.-Q.; Zhang K.; Mei T.-S. Org. Chem. Front. 2018, 5, 2244. |
| [94] | Dhawa U.; Tian C.; Wdowik T.; Oliveira J. C.; Hao J.; Ackermann L. Angew. Chem., Int. Ed. 2020, 59, 13451. |
| [95] | Dhawa U.; Wdowik T.; Hou X.; Yuan B.; Oliveira J. C.; Ackermann L. Chem. Sci. 2021, 12, 14182. |
| [96] | Wang H.; Yue Y.-N.; Xiong R.; Liu Y.-T.; Yang L.-R.; Wang Y.; Lu J.-X. J. Org. Chem. 2021, 86, 16158. |
| [97] | Huang Y.-Q.; Wu Z.-J.; Zhu L; Gu Q.; Lu X.-J.; You S.-L.; Mei T.-S. CCS Chem. 2022, 4, 3181. |
| [98] | Wei W.; Scheremetjew A.; Ackermann L. Chem. Sci. 2022, 13, 2783. |
| [99] | Huang X.; Zhang Q.; Lin J.; Harms K.; Meggers E. Nat. Catal. 2019, 2, 34. |
| [100] | Xiong P.; Hemming M.; Ivlev S. I.; Meggers E. J. Am. Chem. Soc. 2022, 144, 15, 6964. |
| [101] | Xiong P.; Ivlev S. I.; Meggers E. Nat. Catal. 2023, 6, 1186. |
| [102] | Wynberg H.; Staring E. G. J. Org. Chem. 1985, 50, 1977. |
| [103] | Nielsen M. F.; Batanero B.; L?hl T.; Sch?fer H. J.; Würthwein E. U.; Fr?hlich R. Chem.-Eur. J. 1997, 3, 2011. |
| [104] | Lòpez C.; De Vries A.; Marrink S. Sci. Rep. 2013, 3, 2071. |
| [105] | Park J. W.; Choi M. H.; Park K. K. Tetrahedron Lett. 1995, 36, 2637. |
| [106] | Shankaraiah N.; Pilli R. A.; Santos L. S. Tetrahedron Lett. 2008, 49, 5098. |
| [107] | Wang Z.-L.; Zhao Y.-J.; Xiong R.; Yang L.-R.; Wang H.; Lu J.-X. ChemistrySelect 2021, 6, 876. |
| [108] | Zhang K.; Wang H.; Zhao S.-F.; Niu D.-F.; Lu J.-X. J. Electroanal. Chem. 2009, 630, 35. |
| [109] | He Z.; Liu H.-L.; Wang Z.-H.; Jiao K.-J.; Li Z.-M.; Li Z.-J.; Fang P.; Mei T.-S. J. Am. Chem. Soc. 2023, 88, 6203. |
| [110] | Zhang Q.-Y.; Li L.-X.; Wang S.-L.; Ma J.; Guo H.-M. Adv. Synth. Catal. 2023, 365, 3455. |
| [111] | Kashiwagi Y.; Kurashima F.; Kikuchi C.; Anzai J. I.; Osa T.; Bobbitt J. M. Tetrahedron Lett. 1999, 40, 6469. |
| [112] | Kashiwagi Y.; Kurashima F.; Kikuchi C.; Anzai J.; Osa T.; Bobbitt J. M. Chem. Commun. 1999, 1983. |
| [113] | Kuroboshi M.; Yoshihisa H.; Cortona M. N.; Kawakami Y.; Gao Z.; Tanaka H. Tetrahedron Lett. 2000, 41, 8131. |
| [114] | Shiigi H.; Mori H.; Tanaka T.; Demizu Y.; Onomura O. Tetrahedron Lett. 2008, 49, 5247. |
| [115] | De Sarkar S.; Biswas A.; Samanta R.C.; Studer A. Chem.-Eur. J. 2013, 19, 4664. |
| [116] | Bui N. N.; Ho X. H.; Mho S. I.; Jang H. Y. Eur. J. Org. Chem. 2009, 5309. |
| [117] | Ho X. H.; Mho S. I.; Kang H.; Jang H. Y. Eur. J. Org. Chem. 2010, 4436. |
| [118] | Jensen K.; Franke P.; Nielsen L.; Daasbjerg K.; J?rgensen K. Angew. Chem., Int. Ed. 2010, 49, 129 |
| [119] | Fu N.; Li L.; Yang Q.; Luo S. Org. Lett. 2017, 19, 2122. |
| [120] | Yang Q.; Zhang L.; Ye C.; Luo S.; Wu L.-Z.; Tung C.-H. Angew. Chem., Int. Ed. 2017, 56, 3694. |
| [121] | Li L.; Li Y.; Fu N.; Zhang L.; Luo S. Angew. Chem., Int. Ed. 2020, 59, 14347. |
| [122] | Campbell C. D.; Rees C. W. J. Chem. Soc. C 1969, 5, 742. |
| [123] | Wang Z.-H.; Gao P.-S.; Wang X.; Gao J.-Q.; Xu X.-T.; He Z.; Ma C.; Mei T.-S. J. Am. Chem. Soc. 2021, 143, 15599. |
| [124] | Lu F.-Y.; Chen Y.-J.; Chen Y.; Ding X.; Guan Z.; He Y.-H. Chem. Commun. 2020, 56, 623. |
| [125] | Chang X.; Zhang J.; Zhang Q.; Guo C. Angew. Chem., Int. Ed. 2020, 59, 18500. |
| [126] | Francke R.; Little R. D. Chem. Soc. Rev. 2014, 43, 2492. |
| [127] | Page P. C. B.; Marken F.; Williamson C.; Chan Y.; Buckley B. R.; Bethell D. Adv. Synth. Catal. 2008, 350, 1149. |
| [128] | Mu?iz K.; Barreiro L.; Romero R. M.; Martínez C. J. Am. Chem. Soc. 2017, 139, 4354. |
| [129] | Uyanik M.; Sasakura N.; Mizuno M.; Ishihara K. ACS Catal. 2017, 7, 872. |
| [130] | Banik S. M.; Medley J. W.; Jacobsen E. N. Science 2016, 353, 51. |
| [131] | Hu B.; Cao Y.; Zhang B.; Negrerie D. Z.; Du Y. Adv. Synth. Catal. 2017, 359, 2542. |
| [132] | Gao W.-C.; Xiong Z.-Y.; Pirhaghani S.; Wirth T. Synthesis 2019, 51, 276. |
| [133] | Xu K.; Li W.; Zhu S.; Zhu T. Angew. Chem., Int. Ed. 2019, 58, 17625. |
| [134] | Zhou P.; Li W.; Lan J.; Zhu T. Nat. Commun. 2022, 13, 3827. |
| [135] | Moeller K. D. Chem. Rev. 2018, 118, 4817. |
| [136] | Tan X.; Wang Q.; Sun J. Nat. Commun. 2023, 14, 357. |
| [137] | Wu R.; Ma C.; Zhu Z. Curr. Opin. Electrochem. 2020, 19, 1. |
| [138] | Jenner L. P.; Butt J. N. Curr. Opin. Electrochem. 2018, 8, 81. |
| [139] | Cadoux C.; Milton R. D. ChemElectroChem 2020, 7, 1974. |
| [140] | Shimoda K.; Ito D. I.; Izumi S.; Hirata T. J. Chem. Soc., Perkin Trans. 1 1996, 4, 355. |
| [141] | Simon H.; Günther H.; Bader J.; Tischer W. Angew. Chem., Int. Ed. 1981, 20, 861. |
| [142] | Yuan R.; Watanabe S.; Kuwabata S.; Yoneyama H. J. Org. Chem. 1997, 62, 2494. |
| [143] | H?llrigl V.; Otto K.; Schmid A. Adv. Synth. Catal. 2007, 349, 1337. |
| [144] | Hildebrand F.; Lütz S. Tetrahedron: Asymmetry 2007, 18, 1187. |
| [145] | Hollmann F.; Hofstetter K.; Habicher T.; Hauer B.; Schmid A. J. Am. Chem. Soc. 2005, 127, 6540. |
| [146] | Ruinatscha R.; Dusny C.; Buehler K.; Schmid A. Adv. Synth. Catal. 2009, 351, 2505. |
| [147] | Lim D.; Kim Y. H.; Joo J. C.; Yoo Y. J. Enzyme Microb. Technol. 2010, 47, 313. |
| [148] | Dembitsky V. M. Tetrahedron 2003. 59, 4701. |
| [149] | van de Velde F.; Bakker M.; van Rantwijk F.; Rai G. P.; Hager L. P.; Sheldon R. A. J. Mol. Catal. B: Enzym. 2001, 11, 765. |
| [150] | Holland H. L.; Weber H. K. Curr. Opin. Biotechnol. 2000, 11, 547. |
| [151] | van Rantwijk F.; Sheldon R. A. Curr. Opin. Biotechnol. 2000, 11, 554. |
| [152] | Lütz S.; Steckhan E.; Liese A. Electrochem. Commun. 2004, 6, 583. |
| [153] | Lütz S.; Vuorilehto K.; Liese A. Biotechnol. Bioeng. 2007, 98, 525. |
| [154] | Sturm-Richter K.; Golitsch F.; Sturm G.; Kipf E.; Dittrich A.; Beblawy S.; Kerzenmacher S.; Gescher J. Bioresour. Technol. 2015, 186, 89. |
| [155] | Mayr J. C.; Grosch J. H.; Hartmann L.; Rosa L. F.; Spiess A. C.; Harnisch F. ChemSusChem 2019, 12, 1631. |
| [156] | Chen H.; Cai R.; Patel J.; Dong F.; Chen H.; Minteer S. D. J. Am. Chem. Soc. 2019, 141, 4963. |
| [157] | Chen H.; Prater M. B.; Cai R.; Dong F.; Chen H.; Minteer S. D. J. Am. Chem. Soc. 2020, 142, 4028. |
| [158] | Dong F.; Chen H.; Malapit C. A.; Prater M. B.; Li M.; Yuan M.; Lim K.; Minteer S. D. J. Am. Chem. Soc. 2020, 142, 8374. |
| [159] | Wang H.; Li M. H.; Liu H.; Wang Y. L.; Zhu J. W.; Lu J. X. ChemCatChem 2024, e202301593. |
| [160] | Fujihira M.; Yokozawa A.; Kinoshita H.; Osa T. Chem. Lett. 1982, 11, 1089. |
| [161] | Abe S.; Nonaka T.; Fuchigami T. J. Am. Chem. Soc. 1983, 105, 3630. |
| [162] | Abe S.; Fuchigami T.; Nonaka T. Chem. Lett. 1983, 12, 1033. |
| [163] | Firth B. E.; Miller L. L.; Mitani M.; Rogers T.; Lennox J.; Murray R. W. J. Am. Chem. Soc. 1976, 98, 8271. |
| [164] | Firth B. E.; Miller L. L. J. Am. Chem. Soc. 1976, 98, 8272. |
| [165] | Komori T.; Nonaka T. J. Am. Chem. Soc. 1983, 105, 5690. |
| [166] | Komori T.; Nonaka T. J. Am. Chem. Soc. 1984, 106, 2656. |
| [167] | Osa T.; Kashiwagi Y.; Yanagisawa Y.; Bobbitt J. M. J. Am. Chem. Soc. 1994, 2535. |
| [168] | Kashiwagi Y.; Yanagisawa Y.; Kurashima F.; Anzai J. I.; Osa T.; Bobbitt J. M. Chem. Commun. 1996, 2745. |
| [169] | Yanagisawa Y.; Kashiwagi Y.; Kurashima F.; Anzai J. I.; Osa T.; Bobbitt J. M. Chem. Lett. 1996, 25, 1043. |
| [170] | Kashiwagi Y.; Kurashima F.; Chiba S.; Anzai J. I.; Osa T.; Bobbitt J. M. Chem. Commun. 2003, 114. |
| [171] | Moutet J. C.; Duboc-Toia C.; Ménage S.; Riesgo E. C.; Tingry S. Adv. Mater. 1998, 10, 665. |
| [172] | Yue Y.-N.; Meng W.-J.; Liu L.; Hu Q.-L.; Wang H.-J.; Lu J.-X. Electrochim. Acta 2018, 260, 606. |
| [173] | Yang H.-P.; Fen Q.; Wang H.; Lu J.-X. Electrochem. Commun. 2016, 71, 38. |
| [174] | Yue Y.-N.; Wang Z.-L.; Yang L.-R.; Zhao Y.-J.; Wang H.; Lu J.-X. Electrochim. Acta 2021, 375, 137926. |
| [175] | (a) Horner L.; Skaletz D. H. Tetrahedron Lett. 1970, 11, 3679. |
| [175] | (b) Horner L.; Ruprecht H. Tetrahedron Lett. 1971, 11, 2803. |
| [175] | (c) Horner L.; Degner D. Tetrahedron Lett. 1971, 12, 1241. |
| [175] | (d) Horner L.; Degner D. Tetrahedron Lett. 1971, 12, 1245. |
| [175] | (e) Horner L.; Schneider R. Tetrahedron Lett. 1973, 14, 3133. |
| [175] | (f) Horner L.; Degner D. Electrochim. Acta. 1974, 19, 61. |
| [176] | Kodama Y.; Fujiwara A.; Kawamoto H.; Ohta N.; Kitani A.; Ito S. Chem. Lett. 2001, 30, 240. |
| [177] | Yadav A. K.; Singh A. Bull. Chem. Soc. Jpn 2002. 75, 587. |
| [178] | Yadav A. K.; Manju M. Indian J. Chem. 2006, 45B, 2770. |
| [179] | Maekawa H.; Itoh K.; Goda S.; Nishiguchi I. Chirality 2003, 15, 95. |
| [180] | Zielinski C.; Sch?fer H. J. Tetrahedron Lett. 1994, 35, 5621. |
| [181] | Reufer C.; Zielinski C.; Sch?fer H. J.; Fr?lich R. Acta Chem. Scand. 1999, 53, 1023. |
| [182] | Durandetti M.; Périchon J.; Nédélec J. Y. J. Org. Chem. 1997, 62, 7914. |
| [183] | D'Oca, M. G.; Pilli, R. A.; Vencato, I. Tetrahedron Lett. 2000, 41, 9709. |
| [184] | D'Oca, M. G.; Pilli, R. A.; Pardini, V. L.; Curi, D.; Comninos, F. J. Braz. Chem. Soc. 2001, 12, 507. |
| [185] | Kise N.; Iwasaki K.; Tokieda N.; Ueda N. Org. Lett. 2001, 3, 3241. |
| [186] | Kise N.; Iitaka S.; Iwasaki K.; Ueda N. J. Org. Chem. 2002. 67, 8305. |
| [187] | Feroci M.; Inesi A.; Orsini M.; Palombi L. Org. Lett. 2002, 4, 2617. |
| [188] | Feroci M.; Orsini M.; Palombi L.; Sotgiu G.; Colapietro M.; Inesi A. J. Org. Chem. 2004, 69, 487. |
| [189] | Palombi L.; Feroci M.; Orsini M.; Inesi A. Tetrahedron: Asymmetry 2002, 13, 2311. |
| [190] | Orsini M.; Feroci M.; Sotgiu G.; Inesi A. Org. Biomol. Chem. 2005, 3, 1202. |
| [191] | Sierecki E.; Turcaud S.; Martens T.; Royer J. Synthesis 2006, 3199. |
| [192] | Feroci M. Adv. Synth. Catal. 2007, 349, 2177. |
| [193] | Lee D. S. Tetrahedron: Asymmetry 2009, 20, 2014. |
| [194] | Magdesieva T. V.; Levitskiy O. A.; Grishin Y. K.; Ambartsumyan A. A.; Kiskin M. A.; Churakov A. V.; Babievsky K. K.; Kochetkov K. A. Organometallics 2014, 33, 4629. |
| [195] | Levitskiy O. A.; Grishin Y. K.; Paseshnichenko K. A.; Kochetkov K. A.; Magdesieva T. V. Tetrahedron Lett. 2018, 59, 2831. |
| [196] | Kise N.; Hamada Y.; Sakurai T. Org. Lett. 2014, 16, 3348. |
/
| 〈 |
|
〉 |