有机化学 ›› 2024, Vol. 44 ›› Issue (3): 673-727.DOI: 10.6023/cjoc202402005 上一篇 下一篇
所属专题: 光电催化综述合集
综述与进展
高淳, 刘欣, 王明慧, 刘淑贤, 朱婷婷, 张怡康, 郝二军*(), 杨启亮*()
收稿日期:
2024-02-03
修回日期:
2024-03-02
发布日期:
2024-04-02
基金资助:
Chun Gao, Xin Liu, Minghui Wang, Shuxian Liu, Tingting Zhu, Yikang Zhang, Erjun Hao(), Qiliang Yang()
Received:
2024-02-03
Revised:
2024-03-02
Published:
2024-04-02
Contact:
*E-mail: yangqiliang@htu.edu.cn; hej@htu.edu.cn
Supported by:
文章分享
不对称合成是有机化学最重要和最有价值的前沿领域之一. 近年来, 随着有机电化学的复兴和蓬勃发展, 利用电化学的优势, 拓展不对称催化的反应类型、活化模式、成键体系以及底物的适用范围, 为完成传统化学难以实现或者无法实现的不对称转化带来新的契机. 因此, 发展新型、高效、精准和可持续的电化学不对称合成策略, 具有重要的研究意义. 尽管具有诸多优势并取得了关键进展, 不对称电化学合成依然极具挑战性, 高对映选择性电化学转化的例子报道相对较少. 近年来, 国内外有机化学领域的学者们在电化学不对称催化领域开展了一系列原创性的研究工作, 取得了令人瞩目的成果. 全面梳理了过渡金属、有机小分子、生物酶、手性电极、手性电解质、手性溶剂和手性辅助剂参与的不对称电化学合成及其相关的反应机理; 概述了不对称有机电化学合成领域的理论创新、技术突破和困难挑战; 并展望了该领域的未来发展趋势.
高淳, 刘欣, 王明慧, 刘淑贤, 朱婷婷, 张怡康, 郝二军, 杨启亮. 电化学不对称合成反应的研究进展[J]. 有机化学, 2024, 44(3): 673-727.
Chun Gao, Xin Liu, Minghui Wang, Shuxian Liu, Tingting Zhu, Yikang Zhang, Erjun Hao, Qiliang Yang. Advances in Asymmetric Electrochemical Synthesis[J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 673-727.
[195] |
Levitskiy O. A.; Grishin Y. K.; Paseshnichenko K. A.; Kochetkov K. A.; Magdesieva T. V. Tetrahedron Lett. 2018, 59, 2831.
|
[196] |
Kise N.; Hamada Y.; Sakurai T. Org. Lett. 2014, 16, 3348.
doi: 10.1021/ol5013789 |
[1] |
(a) Nicholson W. J. Nat. Philos. Chem. Arts. 1800, 4, 179.
|
(b) Lund H. J Electrochem. Soc. 2002, 149, S21.
doi: 10.1149/1.1462037 |
|
[2] |
Faraday M. Ann. Phys.Chem. 1834, 109, 433.
|
[3] |
Kolbe H. J. Prakt. Chem. 1847, 41, 137.
doi: 10.1002/prac.v41:1.o2 |
[4] |
Simons J. H. J. Electrochem. Soc. 1949, 95, 47.
doi: 10.1149/1.2776733 |
[5] |
Gandeepan P.; Finger L. H.; Meyer T. H.; Ackermann L. Chem. Soc. Rev. 2020, 49, 4254.
doi: 10.1039/D0CS00149J |
[6] |
Jiao K. J.; Xing Y. K.; Yang Q. L.; Qiu H.; Mei T. S. Acc. Chem. Res. 2020, 53, 300.
doi: 10.1021/acs.accounts.9b00603 |
[7] |
Liu S. F.; Nusrat F. Mol. Catal. 2019, 463, 16.
|
[8] |
Waldvogel S. R.; Lips S.; Selt M.; Riehl B.; Kampf C. J. Chem. Rev. 2018, 118, 6706.
doi: 10.1021/acs.chemrev.8b00233 |
[9] |
(a) Ma C.; Fang P.; Mei T.-S. ACS Catal. 2018, 8, 7179.
doi: 10.1021/acscatal.8b01697 |
(b) Leech M. C.; Garcia A. D.; Petti A.; Dobbs A. P.; Lam K. React. Chem. Eng. 2020, 5, 977.
doi: 10.1039/D0RE00064G |
|
[10] |
Gourley R. N.; Grimshaw J.; Millar P. G. Chem. Commun. 1967, 1278.
|
[11] |
Jubault M.; Raoult E.; Peltier D. Electrochim. Acta 1977, 22, 67.
doi: 10.1016/0013-4686(77)85056-1 |
[12] |
Watkins B. F.; Behling J. R.; Kariv E.; Miller L. L. J. Am. Chem. Soc. 1975, 97, 3549.
doi: 10.1021/ja00845a061 |
[13] |
Seebach D.; Oei H. A. Angew. Chem., Int. Ed. Engl. 1975, 14, 634.
|
[14] |
Horner L.; Degner D. Tetrahedron Lett. 1968, 9, 5889.
doi: 10.1016/S0040-4039(00)75431-1 |
[15] |
Li H.; Xue Y.-F.; Ge Q.; Liu M.; Cong H.; Tao Z. Mol. Catal. 2021, 499, 111296.
|
[16] |
Chang X.; Zhang Q.; Guo C. Angew. Chem., Int. Ed. 2020, 59, 12612.
doi: 10.1002/anie.v59.31 |
[17] |
Ghosh M.; Shinde V. S.; Rueping M. Beilstein J. Org. Chem. 2019, 15, 2710.
doi: 10.3762/bjoc.15.264 |
[18] |
Lin Q.; Li L.; Luo S. Chem.-Eur. J. 2019, 25, 10033.
doi: 10.1002/chem.v25.43 |
[19] |
Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230.
doi: 10.1021/acs.chemrev.7b00397 |
[20] |
Tang S.; Liu Y.; Lei A. Chem 2018, 4, 27.
doi: 10.1016/j.chempr.2017.10.001 |
[21] |
Cardoso D. S.; Sljukic B.; Santos D. M.; Sequeira C. A. Org. Process Res. Dev. 2017, 21, 1213.
doi: 10.1021/acs.oprd.7b00004 |
[22] |
Liu J.; Lu L.; Wood D.; Lin S. ACS Cent. Sci. 2020, 6, 1317.
doi: 10.1021/acscentsci.0c00549 |
[23] |
Jiao K.-J.; Wang Z.-H.; Ma C.; Liu H.-L.; Cheng B.; Mei T.-S. Chem. Catal. 2022, 2, 3019.
|
[24] |
Wang X.; Xu X.; Wang Z.; Fang P.; Mei T. Chin. J. Org. Chem. 2020, 40, 3738. (in Chinese)
doi: 10.6023/cjoc202003022 |
( 王向阳, 徐学涛, 王振华, 方萍, 梅天胜, 有机化学, 2020, 40, 3738.)
doi: 10.6023/cjoc202003022 |
|
[25] |
Jiang Y.; Xu K.; Zeng C. Chem. Rev. 2018, 118, 4485.
doi: 10.1021/acs.chemrev.7b00271 |
[26] |
Margarita C.; Lundberg H. Catalysts 2020, 10, 982.
doi: 10.3390/catal10090982 |
[27] |
Chakraborty P.; Mandal R.; Garg N.; Sundararaju B. Coord. Chem. Rev. 2021, 444, 214065.
doi: 10.1016/j.ccr.2021.214065 |
[28] |
Rein J.; Zacate S. B.; Mao K.; Lin S. Chem. Soc. Rev. 2023, 52, 8106.
doi: 10.1039/D3CS00511A |
[29] |
Park D. I.; Jung S.; Yoon H. J.; Jin K. Electrochim. Acta 2021, 397, 139271
doi: 10.1016/j.electacta.2021.139271 |
[30] |
Medici F.; Resta S.; Andolina S.; Benaglia M. Catalysts 2023, 13, 944.
doi: 10.3390/catal13060944 |
[31] |
Sharpless K. B.; Amberg W.; Bennani Y. L.; Crispino G. A.; Hartung J.; Jeong K. S.; Kwong H. L.; Morikawa K. Wang Z. M. J. Org. Chem. 1992, 57, 2768.
doi: 10.1021/jo00036a003 |
[32] |
Amundsen A. R.; Balko E. N. J. Appl. Electrochem. 1992, 22, 810.
doi: 10.1007/BF01023722 |
[33] |
Torii S.; Liu P.; Tanaka H. Chem. Lett. 1995, 24, 319.
doi: 10.1246/cl.1995.319 |
[34] |
Torii S., Liu P.; Bhuvaneswari N.; Amatore C.; Jutand A. J. Org. Chem. 1996, 61, 3055.
doi: 10.1021/jo952137r |
[35] |
Zhang Q.-Y.; Lu P.-X.; Wang S.-L.; Li L.-X. Qu G.-R.; Guo H.-M. Org. Chem. Front. 2022, 9, 4818.
doi: 10.1039/D2QO00971D |
[36] |
Guo P.; Wong K.-Y. Electrochem. Commun. 1999, 1, 559.
doi: 10.1016/S1388-2481(99)00110-1 |
[37] |
Tanaka H.; Kuroboshi M.; Takeda H.; Kanda H.; Torii S. J. Electroanal. Chem. 2001, 507, 75.
doi: 10.1016/S0022-0728(01)00387-4 |
[38] |
Zhao R.; Tang Y.; Wei S.; Xu X.; Shi X.; Zhang G. React. Kinet.,Mech. Catal. 2012, 106, 37.
doi: 10.1007/s11144-011-0403-3 |
[39] |
Brown K. L. Chem. Rev. 2005, 105, 2075.
doi: 10.1021/cr030720z |
[40] |
Randaccio L.; Geremia S.; Demitri N.; Wuerges J. Molecules 2010, 15, 3228.
doi: 10.3390/molecules15053228 pmid: 20657474 |
[41] |
Toraya T. Chem. Rev. 2003, 103, 2095.
doi: 10.1021/cr020428b |
[42] |
Ohno T.; Nishioka T.; Hisaeda Y.; Murakami Y. J. Mol. Struct.: THEOCHEM 1994, 308, 207.
doi: 10.1016/0166-1280(94)80103-7 |
[43] |
Murakami Y.; Hisaeda Y.; Ohno T.; Kohno H.; Nishioka T. J. Chem. Soc., Perkin Trans. 2 1995, 1175.
|
[44] |
Feroci M.; Inesi A.; Orsini M.; Palombi L. Org. Lett. 2002, 4, 2617.
pmid: 12153192 |
[45] |
Feroci M.; Orsini M.; Palombi L.; Sotgiu G.; Colapietro M.; Inesi A. J. Org. Chem. 2004, 69, 487.
pmid: 14725464 |
[46] |
Orsini M.; Feroci M.; Sotgiu G.; Inesi A. Org. Biomol. Chem. 2005, 3, 1202.
doi: 10.1039/b500570a |
[47] |
Chen B.-L.; Zhu H.-W.; Xiao Y.; Sun Q.-L.; Wang H.; Lu J.-X. Electrochem. Commun. 2014, 42, 55.
doi: 10.1016/j.elecom.2014.02.009 |
[48] |
Yao Q.-J.; Huang F.-R.; Chen J.-H.; Zhong M.-Y.; Shi B.-F. Angew. Chem., Int. Ed. 2023, 62, e202218533.
doi: 10.1002/anie.v62.11 |
[49] |
Yang D.; Niu J. Chin. J. Org. Chem. 2023, 43, 1887. (in Chinese)
doi: 10.6023/cjoc202300027 |
( 杨丹丹, 牛俊龙, 有机化学, 2023, 43, 1887.)
doi: 10.6023/cjoc202300027 |
|
[50] |
Zhou G.; Chen J.-H.; Yao Q.-J.; Huang F.-R.; Wang Z.-K.; Shi B.-F. Angew. Chem., Int. Ed. 2023, 62, e202302964.
doi: 10.1002/anie.v62.21 |
[51] |
Münchow T. V.; Dana S.; Xu Y.; Yuan B.; Ackermann L. Science 2023, 379, 1036.
doi: 10.1126/science.adg2866 |
[52] |
Liu T.; Zhang W.; Xu C.; Xu Z.; Song D.; Qian W.; Lu G.; Zhang C.-J.; Zhong W.-H.; Ling F. Green Chem. 2023, 25, 3606.
doi: 10.1039/D3GC00455D |
[53] |
Lin Y.; Münchow T. V.; Ackermann L. ACS Catal. 2023, 13, 9713.
doi: 10.1021/acscatal.3c02072 pmid: 38076330 |
[54] |
Wang X.; Si X.-J.; Sun Y.; Wei Z.; Xu M.; Yang D.; Shi L.-L.; Song M.-P.; Niu J.-L. Org. Lett. 2023, 25, 6240.
doi: 10.1021/acs.orglett.3c01685 |
[55] |
Si X.-J.; Zhao X.; Wang J.; Wang X.; Zhang Y.; Yang D.; Song M.-P.; Niu J.-L. Chem. Sci. 2023, 14, 7291.
doi: 10.1039/D3SC01787G |
[56] |
Li T.; Shi L.; Wang X.; Yang C.; Yang D.; Song M.-P.; Niu J.-L. Nat. Commun. 2023, 14, 5271.
doi: 10.1038/s41467-023-40978-4 |
[57] |
Zhang Y.; Liu S.-L.; Li T.; Xu M.; Wang Q.; Yang D.; Song M.-P.; Niu J.-L. ACS Catal. 2024, 14, 1.
doi: 10.1021/acscatal.3c04853 |
[58] |
Gao S.; Wang C.; Yang J.; Zhang J. Nat. Commun. 2023, 14, 1301.
doi: 10.1038/s41467-023-36704-9 |
[59] |
Franco D.; Riahi A.; Hénin F.; Muzart J.; Duñach E. Eur. J. Org. Chem. 2002, 2257.
|
[60] |
Ping Y.; Song H.; Kong W. Chin. J. Org. Chem. 2022, 42, 3302. (in Chinese)
doi: 10.6023/cjoc202205046 |
( 平媛媛, 宋海霞, 孔望清, 有机化学, 2022, 42, 3302.)
doi: 10.6023/cjoc202205046 |
|
[61] |
DeLano T. J.; Reisman S. E. ACS Catal. 2019, 9, 6751.
doi: 10.1021/acscatal.9b01785 |
[62] |
Qiu H.; Shuai B.; Wang Y.-Z.; Liu D.; Chen Y.-G.; Gao P.-S.; Ma H.-X.; Chen S.; Mei T.-S. J. Am. Chem. Soc. 2020, 142, 9872.
doi: 10.1021/jacs.9b13117 |
[63] |
Han G.; Li G.; Sun Y. Nat. Catal. 2023, 6, 224.
doi: 10.1038/s41929-023-00923-6 |
[64] |
Liu D.; Liu Z.-R.; Wang Z.-H.; Ma C.; Herbert S.; Schirok H.; Mei T.-S. Nat. Commun. 2022, 13, 7318.
doi: 10.1038/s41467-022-35073-z |
[65] |
Wang Y.-Z.; Wang Z.-H.; Eshel I. L.; Sun B.; Liu D.; Gu Y.-C.; Molo A.; Mei T.-S. Nat. Commun. 2023, 14, 2322.
doi: 10.1038/s41467-023-37965-0 |
[66] |
Hu X.; Cheng-Sánchez I.; Cuesta-Galisteo S.; Nevado C. J. Am. Chem. Soc. 2023, 145, 6270.
doi: 10.1021/jacs.2c12869 |
[67] |
Zhang Q.; Chang X.; Peng L.; Guo C. Angew. Chem., Int. Ed. 2019, 58, 6999.
doi: 10.1002/anie.v58.21 |
[68] |
Zhang Q.; Liang K.; Guo C. CCS Chem. 2021, 3, 338.
doi: 10.31635/ccschem.021.202000720 |
[69] |
Zhang Q.; Liang K.; Guo C. Angew. Chem., Int. Ed. 2022, 61, e202210632.
doi: 10.1002/anie.v61.38 |
[70] |
Liang K.; Zhang Q.; Guo C. Sci. Adv. 2022, 8, eadd7134.
doi: 10.1126/sciadv.add7134 |
[71] |
Liang K.; Zhang Q.; Guo C. Nat. Synth. 2023, 2, 1184.
doi: 10.1038/s44160-023-00372-w |
[72] |
Sun X.; Zhang Y.; Li T.; Li K.; Sun Q.; Wang Z. Org. Lett. 2024, 26, 1566.
doi: 10.1021/acs.orglett.3c04277 |
[73] |
Huang C.; Tao Y.; Cao X.; Zhou C.; Lu Q. J. Am. Chem. Soc. 2024, 146, 1984.
doi: 10.1021/jacs.3c10194 |
[74] |
Xiong R.; Wang Y.; Zhu J.-W.; Li M.-H.; Lu J.-X.; Wang H. ChemistrySelect 2023, 8, e202301126.
doi: 10.1002/slct.v8.29 |
[75] |
Sun B.; Wang Z.-H.; Wang Y.-Z.; Gu Y.-C.; Ma C.; Mei T.-S. Sci. Bull. 2023, 68, 2033.
doi: 10.1016/j.scib.2023.07.007 |
[76] |
Zhang J.; Zhu W.; Chen Z.; Zhang Q.; Guo C. J. Am. Chem. Soc. 2024, 146, 1522.
doi: 10.1021/jacs.3c11429 |
[77] |
Onomura O.; Arimoto H.; Matsumura Y.; Demizu Y. Tetrahedron Lett. 2007, 48, 8668.
doi: 10.1016/j.tetlet.2007.10.014 |
[78] |
Demizu Y.; Kubo Y.; Miyoshi H.; Maki T.; Matsumura Y.; Moriyama N.; Onomura O. Org. Lett. 2008, 10, 5075.
doi: 10.1021/ol802095e |
[79] |
Fu N.; Song L.; Liu J.; Shen Y.; Siu J. C.; Lin S. J. Am. Chem. Soc. 2019, 141, 14480.
doi: 10.1021/jacs.9b03296 |
[80] |
Song L.; Fu N.; Ernst B. G.; Lee W. H.; Frederick M. O.; DiStasio Jr R. A.; Lin S. Nat. Chem. 2020, 12, 747.
doi: 10.1038/s41557-020-0469-5 pmid: 32601407 |
[81] |
Gao P.-S.; Weng X.-J.; Wang Z.-H.; Zheng C.; Sun B.; Chen Z.-H.; You S.-L.; Mei T.-S. Angew. Chem., Int. Ed. 2020, 59, 15254.
doi: 10.1002/anie.v59.35 |
[82] |
Shen T.; Lambert T. H. Science 2021, 371, 620.
doi: 10.1126/science.abf2798 pmid: 33542135 |
[83] |
Zhang W.; Carpenter K. L.; Lin S. Angew. Chem., Int. Ed. 2020, 59, 409.
doi: 10.1002/anie.v59.1 |
[84] |
Qiu Y.; Scheremetjew A.; Finger L. H.; Ackermann L. Chem.- Eur. J. 2020, 26, 3241.
doi: 10.1002/chem.v26.15 |
[85] |
Yan H.; Hou Z.-W.; Xu H.-C. Angew. Chem., Int. Ed. 2019, 58, 4592.
doi: 10.1002/anie.v58.14 |
[86] |
Wang F.; Stahl S. S. Angew. Chem., Int. Ed. 2019, 58, 6385.
doi: 10.1002/anie.v58.19 |
[87] |
Tan Z.; He X.; Xu K.; Zeng C. ChemSusChem 2022, 15, e202102360.
doi: 10.1002/cssc.v15.6 |
[88] |
Cai C.-Y.; Lai X.-L.; Wang Y.; Hu H.-H.; Song J.; Yang Y.; Wang C.; Xu H.-C. Nat. Catal. 2022, 5, 943.
doi: 10.1038/s41929-022-00855-7 |
[89] |
Fan W.; Zhao X.; Deng Y.; Chen P.; Wang F.; Liu G. J. Am. Chem. Soc. 2022, 144, 21674.
doi: 10.1021/jacs.2c09366 |
[90] |
Lai X.-L.; Chen M.; Wang Y.; Song J.; Xu H.-C. J. Am. Chem. Soc. 2022, 144, 20201.
doi: 10.1021/jacs.2c09050 |
[91] |
Yang K.; Wang Y.; Luo S.; Fu N. Chem.-Eur. J. 2023, 29, e202203962.
doi: 10.1002/chem.v29.24 |
[92] |
Lai X.-L.; Xu H.-C. J. Am. Chem. Soc. 2023, 145, 18753.
doi: 10.1021/jacs.3c07146 |
[93] |
Jiao K.-J.; Li Z.-M.; Xu X.-T.; Zhang L.-P.; Li Y.-Q.; Zhang K.; Mei T.-S. Org. Chem. Front. 2018, 5, 2244.
doi: 10.1039/C8QO00507A |
[94] |
Dhawa U.; Tian C.; Wdowik T.; Oliveira J. C.; Hao J.; Ackermann L. Angew. Chem., Int. Ed. 2020, 59, 13451.
doi: 10.1002/anie.v59.32 |
[95] |
Dhawa U.; Wdowik T.; Hou X.; Yuan B.; Oliveira J. C.; Ackermann L. Chem. Sci. 2021, 12, 14182.
doi: 10.1039/D1SC04687J |
[96] |
Wang H.; Yue Y.-N.; Xiong R.; Liu Y.-T.; Yang L.-R.; Wang Y.; Lu J.-X. J. Org. Chem. 2021, 86, 16158.
doi: 10.1021/acs.joc.1c01030 |
[97] |
Huang Y.-Q.; Wu Z.-J.; Zhu L; Gu Q.; Lu X.-J.; You S.-L.; Mei T.-S. CCS Chem. 2022, 4, 3181.
doi: 10.31635/ccschem.021.202101376 |
[98] |
Wei W.; Scheremetjew A.; Ackermann L. Chem. Sci. 2022, 13, 2783.
doi: 10.1039/D1SC07124F |
[99] |
Huang X.; Zhang Q.; Lin J.; Harms K.; Meggers E. Nat. Catal. 2019, 2, 34.
doi: 10.1038/s41929-018-0198-y |
[100] |
Xiong P.; Hemming M.; Ivlev S. I.; Meggers E. J. Am. Chem. Soc. 2022, 144, 15, 6964.
|
[101] |
Xiong P.; Ivlev S. I.; Meggers E. Nat. Catal. 2023, 6, 1186.
doi: 10.1038/s41929-023-01050-y |
[102] |
Wynberg H.; Staring E. G. J. Org. Chem. 1985, 50, 1977.
doi: 10.1021/jo00211a039 |
[103] |
Nielsen M. F.; Batanero B.; Löhl T.; Schäfer H. J.; Würthwein E. U.; Fröhlich R. Chem.-Eur. J. 1997, 3, 2011.
doi: 10.1002/chem.v3:12 |
[104] |
Lòpez C.; De Vries A.; Marrink S. Sci. Rep. 2013, 3, 2071.
|
[105] |
Park J. W.; Choi M. H.; Park K. K. Tetrahedron Lett. 1995, 36, 2637.
doi: 10.1016/0040-4039(95)00390-X |
[106] |
Shankaraiah N.; Pilli R. A.; Santos L. S. Tetrahedron Lett. 2008, 49, 5098.
doi: 10.1016/j.tetlet.2008.06.028 |
[107] |
Wang Z.-L.; Zhao Y.-J.; Xiong R.; Yang L.-R.; Wang H.; Lu J.-X. ChemistrySelect 2021, 6, 876.
doi: 10.1002/slct.v6.4 |
[108] |
Zhang K.; Wang H.; Zhao S.-F.; Niu D.-F.; Lu J.-X. J. Electroanal. Chem. 2009, 630, 35.
doi: 10.1016/j.jelechem.2009.02.013 |
[109] |
He Z.; Liu H.-L.; Wang Z.-H.; Jiao K.-J.; Li Z.-M.; Li Z.-J.; Fang P.; Mei T.-S. J. Am. Chem. Soc. 2023, 88, 6203.
|
[110] |
Zhang Q.-Y.; Li L.-X.; Wang S.-L.; Ma J.; Guo H.-M. Adv. Synth. Catal. 2023, 365, 3455.
doi: 10.1002/adsc.v365.20 |
[111] |
Kashiwagi Y.; Kurashima F.; Kikuchi C.; Anzai J. I.; Osa T.; Bobbitt J. M. Tetrahedron Lett. 1999, 40, 6469.
doi: 10.1016/S0040-4039(99)01325-8 |
[112] |
Kashiwagi Y.; Kurashima F.; Kikuchi C.; Anzai J.; Osa T.; Bobbitt J. M. Chem. Commun. 1999, 1983.
|
[113] |
Kuroboshi M.; Yoshihisa H.; Cortona M. N.; Kawakami Y.; Gao Z.; Tanaka H. Tetrahedron Lett. 2000, 41, 8131.
doi: 10.1016/S0040-4039(00)01419-2 |
[114] |
Shiigi H.; Mori H.; Tanaka T.; Demizu Y.; Onomura O. Tetrahedron Lett. 2008, 49, 5247.
|
[115] |
De Sarkar S.; Biswas A.; Samanta R.C.; Studer A. Chem.-Eur. J. 2013, 19, 4664.
doi: 10.1002/chem.201203707 pmid: 23436489 |
[116] |
Bui N. N.; Ho X. H.; Mho S. I.; Jang H. Y. Eur. J. Org. Chem. 2009, 5309.
|
[117] |
Ho X. H.; Mho S. I.; Kang H.; Jang H. Y. Eur. J. Org. Chem. 2010, 4436.
|
[118] |
Jensen K.; Franke P.; Nielsen L.; Daasbjerg K.; Jørgensen K. Angew. Chem., Int. Ed. 2010, 49, 129
|
[119] |
Fu N.; Li L.; Yang Q.; Luo S. Org. Lett. 2017, 19, 2122.
doi: 10.1021/acs.orglett.7b00746 |
[120] |
Yang Q.; Zhang L.; Ye C.; Luo S.; Wu L.-Z.; Tung C.-H. Angew. Chem., Int. Ed. 2017, 56, 3694.
doi: 10.1002/anie.v56.13 |
[121] |
Li L.; Li Y.; Fu N.; Zhang L.; Luo S. Angew. Chem., Int. Ed. 2020, 59, 14347.
doi: 10.1002/anie.v59.34 |
[122] |
Campbell C. D.; Rees C. W. J. Chem. Soc. C 1969, 5, 742.
|
[123] |
Wang Z.-H.; Gao P.-S.; Wang X.; Gao J.-Q.; Xu X.-T.; He Z.; Ma C.; Mei T.-S. J. Am. Chem. Soc. 2021, 143, 15599.
|
[124] |
Lu F.-Y.; Chen Y.-J.; Chen Y.; Ding X.; Guan Z.; He Y.-H. Chem. Commun. 2020, 56, 623.
doi: 10.1039/C9CC09178E |
[125] |
Chang X.; Zhang J.; Zhang Q.; Guo C. Angew. Chem., Int. Ed. 2020, 59, 18500.
doi: 10.1002/anie.v59.42 |
[126] |
Francke R.; Little R. D. Chem. Soc. Rev. 2014, 43, 2492.
doi: 10.1039/c3cs60464k pmid: 24500279 |
[127] |
Page P. C. B.; Marken F.; Williamson C.; Chan Y.; Buckley B. R.; Bethell D. Adv. Synth. Catal. 2008, 350, 1149.
doi: 10.1002/adsc.v350:7/8 |
[128] |
Muñiz K.; Barreiro L.; Romero R. M.; Martínez C. J. Am. Chem. Soc. 2017, 139, 4354.
doi: 10.1021/jacs.7b01443 |
[129] |
Uyanik M.; Sasakura N.; Mizuno M.; Ishihara K. ACS Catal. 2017, 7, 872.
doi: 10.1021/acscatal.6b03380 |
[130] |
Banik S. M.; Medley J. W.; Jacobsen E. N. Science 2016, 353, 51.
doi: 10.1126/science.aaf8078 |
[131] |
Hu B.; Cao Y.; Zhang B.; Negrerie D. Z.; Du Y. Adv. Synth. Catal. 2017, 359, 2542.
doi: 10.1002/adsc.v359.15 |
[132] |
Gao W.-C.; Xiong Z.-Y.; Pirhaghani S.; Wirth T. Synthesis 2019, 51, 276.
doi: 10.1055/s-0037-1610373 |
[133] |
Xu K.; Li W.; Zhu S.; Zhu T. Angew. Chem., Int. Ed. 2019, 58, 17625.
doi: 10.1002/anie.v58.49 |
[134] |
Zhou P.; Li W.; Lan J.; Zhu T. Nat. Commun. 2022, 13, 3827.
doi: 10.1038/s41467-022-31453-7 |
[135] |
Moeller K. D. Chem. Rev. 2018, 118, 4817.
doi: 10.1021/acs.chemrev.7b00656 pmid: 29498518 |
[136] |
Tan X.; Wang Q.; Sun J. Nat. Commun. 2023, 14, 357.
doi: 10.1038/s41467-023-36000-6 |
[137] |
Wu R.; Ma C.; Zhu Z. Curr. Opin. Electrochem. 2020, 19, 1.
|
[138] |
Jenner L. P.; Butt J. N. Curr. Opin. Electrochem. 2018, 8, 81.
|
[139] |
Cadoux C.; Milton R. D. ChemElectroChem 2020, 7, 1974.
doi: 10.1002/celc.v7.9 |
[140] |
Shimoda K.; Ito D. I.; Izumi S.; Hirata T. J. Chem. Soc., Perkin Trans. 1 1996, 4, 355.
|
[141] |
Simon H.; Günther H.; Bader J.; Tischer W. Angew. Chem., Int. Ed. 1981, 20, 861.
|
[142] |
Yuan R.; Watanabe S.; Kuwabata S.; Yoneyama H. J. Org. Chem. 1997, 62, 2494.
pmid: 11671588 |
[143] |
Höllrigl V.; Otto K.; Schmid A. Adv. Synth. Catal. 2007, 349, 1337.
doi: 10.1002/adsc.v349:8/9 |
[144] |
Hildebrand F.; Lütz S. Tetrahedron: Asymmetry 2007, 18, 1187.
|
[145] |
Hollmann F.; Hofstetter K.; Habicher T.; Hauer B.; Schmid A. J. Am. Chem. Soc. 2005, 127, 6540.
doi: 10.1021/ja050997b pmid: 15869268 |
[146] |
Ruinatscha R.; Dusny C.; Buehler K.; Schmid A. Adv. Synth. Catal. 2009, 351, 2505.
doi: 10.1002/adsc.v351:14/15 |
[147] |
Lim D.; Kim Y. H.; Joo J. C.; Yoo Y. J. Enzyme Microb. Technol. 2010, 47, 313.
doi: 10.1016/j.enzmictec.2010.08.005 |
[148] |
Dembitsky V. M. Tetrahedron 2003. 59, 4701.
doi: 10.1016/S0040-4020(03)00701-4 |
[149] |
van de Velde F.; Bakker M.; van Rantwijk F.; Rai G. P.; Hager L. P.; Sheldon R. A. J. Mol. Catal. B: Enzym. 2001, 11, 765.
doi: 10.1016/S1381-1177(00)00022-9 |
[150] |
Holland H. L.; Weber H. K. Curr. Opin. Biotechnol. 2000, 11, 547.
doi: 10.1016/S0958-1669(00)00142-7 |
[151] |
van Rantwijk F.; Sheldon R. A. Curr. Opin. Biotechnol. 2000, 11, 554.
doi: 10.1016/S0958-1669(00)00143-9 |
[152] |
Lütz S.; Steckhan E.; Liese A. Electrochem. Commun. 2004, 6, 583.
doi: 10.1016/j.elecom.2004.04.009 |
[153] |
Lütz S.; Vuorilehto K.; Liese A. Biotechnol. Bioeng. 2007, 98, 525.
pmid: 17390382 |
[154] |
Sturm-Richter K.; Golitsch F.; Sturm G.; Kipf E.; Dittrich A.; Beblawy S.; Kerzenmacher S.; Gescher J. Bioresour. Technol. 2015, 186, 89.
doi: 10.1016/j.biortech.2015.02.116 |
[155] |
Mayr J. C.; Grosch J. H.; Hartmann L.; Rosa L. F.; Spiess A. C.; Harnisch F. ChemSusChem 2019, 12, 1631.
doi: 10.1002/cssc.v12.8 |
[156] |
Chen H.; Cai R.; Patel J.; Dong F.; Chen H.; Minteer S. D. J. Am. Chem. Soc. 2019, 141, 4963.
doi: 10.1021/jacs.9b00147 pmid: 30835461 |
[157] |
Chen H.; Prater M. B.; Cai R.; Dong F.; Chen H.; Minteer S. D. J. Am. Chem. Soc. 2020, 142, 4028.
doi: 10.1021/jacs.9b13968 pmid: 32017556 |
[158] |
Dong F.; Chen H.; Malapit C. A.; Prater M. B.; Li M.; Yuan M.; Lim K.; Minteer S. D. J. Am. Chem. Soc. 2020, 142, 8374.
doi: 10.1021/jacs.0c01890 |
[159] |
Wang H.; Li M. H.; Liu H.; Wang Y. L.; Zhu J. W.; Lu J. X. ChemCatChem 2024, e202301593.
|
[160] |
Fujihira M.; Yokozawa A.; Kinoshita H.; Osa T. Chem. Lett. 1982, 11, 1089.
doi: 10.1246/cl.1982.1089 |
[161] |
Abe S.; Nonaka T.; Fuchigami T. J. Am. Chem. Soc. 1983, 105, 3630.
doi: 10.1021/ja00349a046 |
[162] |
Abe S.; Fuchigami T.; Nonaka T. Chem. Lett. 1983, 12, 1033.
doi: 10.1246/cl.1983.1033 |
[163] |
Firth B. E.; Miller L. L.; Mitani M.; Rogers T.; Lennox J.; Murray R. W. J. Am. Chem. Soc. 1976, 98, 8271.
doi: 10.1021/ja00441a069 |
[164] |
Firth B. E.; Miller L. L. J. Am. Chem. Soc. 1976, 98, 8272.
doi: 10.1021/ja00441a070 |
[165] |
Komori T.; Nonaka T. J. Am. Chem. Soc. 1983, 105, 5690.
doi: 10.1021/ja00355a029 |
[166] |
Komori T.; Nonaka T. J. Am. Chem. Soc. 1984, 106, 2656.
doi: 10.1021/ja00321a028 |
[167] |
Osa T.; Kashiwagi Y.; Yanagisawa Y.; Bobbitt J. M. J. Am. Chem. Soc. 1994, 2535.
|
[168] |
Kashiwagi Y.; Yanagisawa Y.; Kurashima F.; Anzai J. I.; Osa T.; Bobbitt J. M. Chem. Commun. 1996, 2745.
|
[169] |
Yanagisawa Y.; Kashiwagi Y.; Kurashima F.; Anzai J. I.; Osa T.; Bobbitt J. M. Chem. Lett. 1996, 25, 1043.
doi: 10.1246/cl.1996.1043 |
[170] |
Kashiwagi Y.; Kurashima F.; Chiba S.; Anzai J. I.; Osa T.; Bobbitt J. M. Chem. Commun. 2003, 114.
|
[171] |
Moutet J. C.; Duboc-Toia C.; Ménage S.; Riesgo E. C.; Tingry S. Adv. Mater. 1998, 10, 665.
doi: 10.1002/(ISSN)1521-4095 |
[172] |
Yue Y.-N.; Meng W.-J.; Liu L.; Hu Q.-L.; Wang H.-J.; Lu J.-X. Electrochim. Acta 2018, 260, 606.
doi: 10.1016/j.electacta.2017.12.058 |
[173] |
Yang H.-P.; Fen Q.; Wang H.; Lu J.-X. Electrochem. Commun. 2016, 71, 38.
doi: 10.1016/j.elecom.2016.08.004 |
[174] |
Yue Y.-N.; Wang Z.-L.; Yang L.-R.; Zhao Y.-J.; Wang H.; Lu J.-X. Electrochim. Acta 2021, 375, 137926.
doi: 10.1016/j.electacta.2021.137926 |
[175] |
(a) Horner L.; Skaletz D. H. Tetrahedron Lett. 1970, 11, 3679.
doi: 10.1016/S0040-4039(01)98560-0 |
(b) Horner L.; Ruprecht H. Tetrahedron Lett. 1971, 11, 2803.
doi: 10.1016/S0040-4039(01)98345-5 |
|
(c) Horner L.; Degner D. Tetrahedron Lett. 1971, 12, 1241.
doi: 10.1016/S0040-4039(01)96676-6 |
|
(d) Horner L.; Degner D. Tetrahedron Lett. 1971, 12, 1245.
doi: 10.1016/S0040-4039(01)96677-8 |
|
(e) Horner L.; Schneider R. Tetrahedron Lett. 1973, 14, 3133.
doi: 10.1016/S0040-4039(01)96338-5 |
|
(f) Horner L.; Degner D. Electrochim. Acta. 1974, 19, 61.
|
|
[176] |
Kodama Y.; Fujiwara A.; Kawamoto H.; Ohta N.; Kitani A.; Ito S. Chem. Lett. 2001, 30, 240.
doi: 10.1246/cl.2001.240 |
[177] |
Yadav A. K.; Singh A. Bull. Chem. Soc. Jpn 2002. 75, 587.
doi: 10.1246/bcsj.75.587 |
[178] |
Yadav A. K.; Manju M. Indian J. Chem. 2006, 45B, 2770.
|
[179] |
Maekawa H.; Itoh K.; Goda S.; Nishiguchi I. Chirality 2003, 15, 95.
doi: 10.1002/chir.v15:1 |
[180] |
Zielinski C.; Schäfer H. J. Tetrahedron Lett. 1994, 35, 5621.
doi: 10.1016/S0040-4039(00)77263-7 |
[181] |
Reufer C.; Zielinski C.; Schäfer H. J.; Frölich R. Acta Chem. Scand. 1999, 53, 1023.
doi: 10.3891/acta.chem.scand.53-1023 |
[182] |
Durandetti M.; Périchon J.; Nédélec J. Y. J. Org. Chem. 1997, 62, 7914.
pmid: 11671890 |
[183] |
D'Oca, M. G.; Pilli, R. A.; Vencato, I. Tetrahedron Lett. 2000, 41, 9709.
doi: 10.1016/S0040-4039(00)01749-4 |
[184] |
D'Oca, M. G.; Pilli, R. A.; Pardini, V. L.; Curi, D.; Comninos, F. J. Braz. Chem. Soc. 2001, 12, 507.
|
[185] |
Kise N.; Iwasaki K.; Tokieda N.; Ueda N. Org. Lett. 2001, 3, 3241.
pmid: 11594804 |
[186] |
Kise N.; Iitaka S.; Iwasaki K.; Ueda N. J. Org. Chem. 2002. 67, 8305.
doi: 10.1021/jo026183k |
[187] |
Feroci M.; Inesi A.; Orsini M.; Palombi L. Org. Lett. 2002, 4, 2617.
pmid: 12153192 |
[188] |
Feroci M.; Orsini M.; Palombi L.; Sotgiu G.; Colapietro M.; Inesi A. J. Org. Chem. 2004, 69, 487.
pmid: 14725464 |
[189] |
Palombi L.; Feroci M.; Orsini M.; Inesi A. Tetrahedron: Asymmetry 2002, 13, 2311.
|
[190] |
Orsini M.; Feroci M.; Sotgiu G.; Inesi A. Org. Biomol. Chem. 2005, 3, 1202.
doi: 10.1039/b500570a |
[191] |
Sierecki E.; Turcaud S.; Martens T.; Royer J. Synthesis 2006, 3199.
|
[192] |
Feroci M. Adv. Synth. Catal. 2007, 349, 2177.
doi: 10.1002/adsc.v349:13 |
[193] |
Lee D. S. Tetrahedron: Asymmetry 2009, 20, 2014.
|
[194] |
Magdesieva T. V.; Levitskiy O. A.; Grishin Y. K.; Ambartsumyan A. A.; Kiskin M. A.; Churakov A. V.; Babievsky K. K.; Kochetkov K. A. Organometallics 2014, 33, 4629.
doi: 10.1021/om500070n |
[1] | 赵明, 颜瑞, 陈虎. 氮杂环卡宾催化醛类化合物的极性反转[J]. 有机化学, 2024, 44(7): 2204-2215. |
[2] | 王家晟, 王泽树, 何卫民, 叶龙武. 邻炔基苯胺氢胺化合成轴手性吲哚研究进展[J]. 有机化学, 2024, 44(6): 1786-1792. |
[3] | 陆玲依, 邱晓东. 自由基形式烯烃双烷基化反应研究进展[J]. 有机化学, 2024, 44(6): 1701-1718. |
[4] | 李非凡, 余康, 倪传志, 朱园园, 曾婕, 古双喜. 测定氨基酸浓度和对映体组成的手性荧光探针[J]. 有机化学, 2024, 44(6): 1862-1869. |
[5] | 刘晨光. 含氮芳香性杂环化合物的不对称氢化反应研究进展[J]. 有机化学, 2024, 44(5): 1403-1422. |
[6] | 万云辉, 杨福美, 陈明瀚, 孙德立, 叶丹锋. 无过渡金属催化的N-苄基-N-叔丁氧羰基酰胺与不饱和醇的酯化反应[J]. 有机化学, 2024, 44(4): 1293-1300. |
[7] | 李晨龙, 余志祥. 一氧化碳参与的过渡金属催化的插羰环加成反应研究进展[J]. 有机化学, 2024, 44(4): 1045-1068. |
[8] | 郭凯杰, 符昕姝, 李靖, 陈艳, 胡美丽, 堵锡华, 谢屿阳, 何燕. 过渡金属催化C—S键活化与转化研究进展[J]. 有机化学, 2024, 44(4): 1124-1150. |
[9] | 鞠国栋, 周冠宇, 赵应声. 三异丙基硅烷(TIPS)保护苯酚的无过渡金属催化区域选择性硫氰化反应[J]. 有机化学, 2024, 44(4): 1327-1336. |
[10] | 彭天凤, 赵玉祥, 浦绍健, 罗娟, 刘腾, 缪应纯, 沈先福. 过渡金属催化的关键反应在异戊烯基吲哚生物碱全合成中的研究进展[J]. 有机化学, 2024, 44(4): 1160-1180. |
[11] | 黄克金, 蔡金博, 王瑞革, 张永红, 王斌, 夏昱, 金伟伟, 李新勇, 刘晨江. 硼促进甘氨酸衍生物的电化学C(sp2)—H溴化反应[J]. 有机化学, 2024, 44(3): 989-996. |
[12] | 高瑞林, 文丽荣, 郭维斯. 电化学促进未活化C(sp3)—H官能团化研究进展[J]. 有机化学, 2024, 44(3): 892-902. |
[13] | 陈远航, 何劲宇, 张博, 王延钊, 孔令轩, 钱伟烽, 王娜娜, 段闻喜, 欧阳妍妍, 朱翠菊, 徐浩. 不对称电化学有机合成[J]. 有机化学, 2024, 44(3): 748-779. |
[14] | 杨爽, 房新强. 氮杂环卡宾催化实现的动力学拆分近期研究进展[J]. 有机化学, 2024, 44(2): 448-480. |
[15] | 陈宛婷, 钟雄威, 邢佳乐, 吴昌书, 高杨. C—N轴手性化合物的不对称催化合成研究进展[J]. 有机化学, 2024, 44(2): 349-377. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||