研究论文

锰催化环丁醇开环的C—C键氟化反应

  • 王丽梅 ,
  • 刘晓圆 ,
  • 昝金成 ,
  • 孙书涛 ,
  • 刘磊 ,
  • 李伟 ,
  • 刘希功
展开
  • a 山东中医药大学药学院 济南 250355
    b 山东大学化学与化工学院 济南 250100
    c 山东第一医科大学药学院(药物研究所) 济南 250117
† 共同第一作者.

收稿日期: 2024-01-26

  修回日期: 2024-03-15

  网络出版日期: 2024-03-28

基金资助

国家自然科学基金(92156008); 国家自然科学基金(22161142016); 山东省泰山学者计划和山东省自然科学基金(ZR2020QB018)

Manganese-Catalyzed Ring-Opening C—C Bond Fluorination of Cyclobutanols

  • Limei Wang ,
  • Xiaoyuan Liu ,
  • Jincheng Zan ,
  • Shutao Sun ,
  • Lei Liu ,
  • Wei Li ,
  • Xigong Liu
Expand
  • a School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355
    b School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100
    c School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University, Jinan 250117
† These authors contributed equally to this work.

Received date: 2024-01-26

  Revised date: 2024-03-15

  Online published: 2024-03-28

Supported by

National Natural Science Foundation of China(92156008); National Natural Science Foundation of China(22161142016); Taishan Scholar Program at Shandong Province and the Natural Science Foundation of Shandong Province(ZR2020QB018)

摘要

锰因其相对丰度高、价格低廉、环境友好等特点而在催化环丁醇的C—C键断裂官能化反应研究中备受关注. 报道了一例锰催化环丁醇开环C—C键氟化反应. 该反应在温和的条件下, 以10 mol%的Mn(OAc)2作为催化剂, HF•Et3N和PhIO作用原位生成的亲电氟化试剂作为氟源, 为直接合成γ-氟化酮提供了一种有效的途径. 该反应具有优异的官能团耐受性, 并显示出广泛的底物范围, 能够以50%~76%的产率得到相应的产物.

本文引用格式

王丽梅 , 刘晓圆 , 昝金成 , 孙书涛 , 刘磊 , 李伟 , 刘希功 . 锰催化环丁醇开环的C—C键氟化反应[J]. 有机化学, 2024 , 44(7) : 2333 -2340 . DOI: 10.6023/cjoc202401031

Abstract

Manganese-catalyzed C—C bond cleavage of cyclobutanols has attracted great attention due to the high abundance and cheap and eco-friendly behaviour. A manganese-catalyzed ring-opening C—C bond fluorination of cyclobutanols is reported. Under mild conditions, the reaction provides a straightforward access to γ-fluorinated ketones using 10 mol% Mn(OAc)2 as catalyst and electrophilic fluorination reagent, which was generated in situ from HF•Et3N and PhIO, as fluorine source. The reaction has an excellent functional-group tolerance and displays a broad substrate scope, affording the corresponding products in 50%~76% yields.

参考文献

[1]
(a) Mu?ller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
[1]
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
[1]
(c) O’Hagan, D. J. Fluorine Chem. 2010, 131, 1071.
[1]
(d) Johnson, B. M.; Shu, Y.-Z.; Zhuo, X.; Meanwell, N. A. J. Med. Chem. 2020, 63, 6315.
[1]
(e) Cheng, M.; Guo, C.; Gross, M. L. Angew. Chem., Int. Ed. 2020, 59, 5880.
[1]
(f) Ogawa, Y.; Tokunaga, E.; Kobayashi, O.; Hirai, K.; Shibata, N. iScience 2020, 23, 101467.
[1]
(g) Li, Y.; Dai, M.; Wang, L.; Wang, G. J. Ethnopharmacol. 2021, 269, 113749.
[1]
(h) Wang, L.; Wang, P.; Wang, D.; Tao, M.; Xu, W. Nat. Prod. Commun. 2020, 15, 20912088.
[1]
(i) Song, A.; Ding, T.; Wei, N.; Yang, J.; Ma, M.; Zheng, S.; Jin, H. Toxicol. Appl. Pharmacol. 2023, 472, 116574.
[2]
(a) Thayer, A. M. Chem. Eng. News 2006, 84, 15.
[2]
(b) Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev. 2008, 108, 1501.
[2]
(c) Littich, R.; Scott, P. J. H. Angew. Chem., Int. Ed. 2012, 51, 1106.
[2]
(d) Wang, J.; Sánchez-Roselló, M.; Ace?a, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
[2]
(e) de la Torre, B. G.; Albericio, F. Molecules 2021, 26, 627.
[2]
(f) Wang, L.; Wang, N.; Qi, Y.; Sun, S.; Liu, X.; Li, W.; Liu, L. Chin. J. Org. Chem. 2020, 40, 3934. (in Chinese)
[2]
(王琳, 王楠, 齐越, 孙书涛, 刘希功, 李伟, 刘磊, 有机化学, 2020, 40, 3934.)
[2]
(g) Wang, D.; Kan, L.; Ma, Y.; Liu, L. Chin. J. Org. Chem. 2021, 41, 3192. (in Chinese)
[2]
(王东琳, 阚玲珑, 马玉道, 刘磊, 有机化学, 2021, 41, 3192.)
[2]
(h) Du, T.; Li, S.; He, Y.; Long, H.; Liu, X.; Li, H.-B.; Liu, L. Chin. J. Chem. 2022, 40, 1681.
[2]
(i) Zang, L.; Xu, H.; Huang, C.; Wang, C.; Wang, R.; Chen, R.; Chen, Y.; Wang, L.; Wang, H. Recent Pat. Anticancer Drug Discov. 2022, 17, 145.
[2]
(j) Hong, H.; Zou, Q.; Liu, Y.; Wang, S.; Shen, G.; Yan, X. ChemMedChem 2021, 16, 2381.
[2]
(k) Wang, X.; Shen, C.; Wang, X.; Tang, J.; Wu, Z.; Huang, Y.; Shao, W.; Geng, K.; Xie, H.; Pu, Z. Chin. Med. 2023, 18, 112.
[3]
(a) O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
[3]
(b) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
[3]
(c) Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612.
[3]
(d) Champagne, P. A.; Desroches, J.; Hamel, J.-D.; Vandamme, M.; Paquin, J.-F. Chem. Rev. 2015, 115, 9073.
[3]
(e) Yerien, D. E.; Bonesi, S.; Postigo, A. Org. Biomol. Chem. 2016, 14, 8398.
[3]
(f) Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V. A.; Coelho, J. A. S.; Toste, F. D. Chem. Rev. 2018, 118, 3887.
[3]
(g) Szpera, R.; Moseley, D. F. J.; Smith, L. B.; Sterling, A. J.; Gouverneur, V. Angew. Chem., Int. Ed. 2019, 58, 14824.
[4]
(a) Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N. Angew. Chem., Int. Ed. 2011, 50, 7740.
[4]
(b) Souillart, L.; Parker, E.; Cramer, N. Top. Curr. Chem. 2014, 346, 163.
[4]
(c) Marek, I.; Masarwa, A.; Delaye, P.-O.; Leibeling, M. Angew. Chem., Int. Ed. 2015, 54, 414.
[4]
(d) Ren, R.; Zhu, C. Synlett 2016, 27, 1139.
[4]
(e) Wu, X.; Zhu, C. Chem. Rec. 2018, 18, 587.
[4]
(f) Yan, H.; Smith, G. S.; Chen, F.-E. Green Synth. Catal. 2022, 3, 219.
[4]
(g) Sun, Y.; Yang, L.; Cheng, Y.; An, G.; Li, G. Chin. Chem. Lett. 2024, 35, 109250.
[4]
(h) Zhai, S.; Qiu, S.; Yang, S.; Gao, X.; Feng, X.; Yun, C.; Han, N.; Niu, Y.; Wang, J.; Zhai, H. Chin. Chem. Lett. 2023, 34, 107657.
[4]
(i) Wu, K.; Li, X.; Wang, W.; Huang, Y.; Jiang, Q.; Li, W.; Chen, Y.; Yang, Y.; Li, C. ACS Catal. 2022, 12, 4261.
[4]
(j) Fang, L.; Jia, S.; Fan, S.; Zhu, J. Chem. Commun. 2023, 59, 10392.
[5]
(a) Zhao, H.; Fan, X.; Yu, J.; Zhu, C. J. Am. Chem. Soc. 2015, 137, 3490.
[5]
(b) Ren, S.; Feng, C.; Loh, T.-P. Org. Biomol. Chem. 2015, 13, 5105.
[5]
(c) Ishida, N.; Okumura, S.; Nakanishi, Y.; Murakami, M. Chem. Lett. 2015, 44, 821.
[6]
(a) Ren, R.; Wu, Z.; Xu, Y.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 2866.
[6]
(b) Ren, R.; Wu, Z.; Zhu, C. Chem. Commun. 2016, 52, 8160.
[6]
(c) Wang, D.; Ren, R.; Zhu, C. J. Org. Chem. 2016, 81, 8043.
[6]
(d) Allen, B. D. W.; Hareram, M. D.; Seastram, A. C.; McBride, T.; Wirth, T.; Browne, D. L.; Morrill, L. C. Org. Lett. 2019, 21, 9241.
[6]
(e) Zhang, Y.-H.; Zhang, W.-W.; Zhang, Z.-Y.; Zhao, K.; Loh, T.-P. Org. Lett. 2019, 21, 5101.
[6]
(f) Meyer, T.; Yin, Z.; Wu, X.-F. Tetrahedron Lett. 2019, 60, 864.
[6]
(g) Lou, C.; Lv, L.; Li, Z. Adv. Synth. Catal. 2022, 364, 3743.
[6]
(h) He, Y.; Du, C.; Han, J.; Zhu, C.; Xie, J. Chin. J. Chem. 2022, 40, 1546.
[7]
Lu, Y.-C.; West, J. G. ACS Catal. 2021, 11, 12721.
[8]
(a) Kitamura, T.; Kuriki, S.; Morshed, M. H.; Hori, Y. Org. Lett. 2011, 13, 2392.
[8]
(b) Kitamura, T.; Muta, K. J. Org. Chem. 2014, 79, 5842.
[8]
(c) Kitamura, T.; Mizuno, S.; Muta, K.; Oyamada, J. J. Org. Chem. 2018, 83, 2773.
[8]
(d) Wang, L.; Kitamura, T.; Zhou, Y.; Butler, G.; Han, J.; Soloshonok, V. A. J. Fluorine Chem. 2020, 240, 109670.
[9]
(a) Ren, R.; Zhao, H.; Huan, L.; Zhu, C. Angew. Chem., Int. Ed. 2015, 54, 12692.
[9]
(b) Huan, L.; Zhu, C. Org. Chem. Front. 2016, 3, 146.
[9]
(c) Liu, W.; Huang, X.; Cheng, M.-J.; Nielsen, R. J.; Goddard, W. A., III; Groves, J. T. Science 2012, 337, 1322.
[9]
(d) Huang, X.; Liu, W.; Hooker, J. M.; Groves, J. T. Angew. Chem., Int. Ed. 2015, 54, 5241.
[10]
(a) He, Y.; Tian, C.; An, G.; Li, G. Chin. Chem. Lett. 2024, 35, 108546.
[10]
(b) Lv, X.; Cheng, Y.; Zong, Y.; Wang, Q.; An, G.; Wang, J.; Li, G. ACS Catal. 2023, 13, 7310.
文章导航

/