钯催化的三取代烯烃钯催化的三取代烯烃的对映和非对映选择性氢羧基化反应
收稿日期: 2024-02-02
修回日期: 2024-03-13
网络出版日期: 2024-03-28
基金资助
国家自然科学基金(22271094)
Pd-Catalyzed Enantio- and Diastereo-selective Hydrocarboxylation of Trisubstituted Alkenes
Received date: 2024-02-02
Revised date: 2024-03-13
Online published: 2024-03-28
Supported by
National Natural Science Foundation of China(22271094)
王震 , 董开武 . 钯催化的三取代烯烃钯催化的三取代烯烃的对映和非对映选择性氢羧基化反应[J]. 有机化学, 2024 , 44(10) : 3249 -3257 . DOI: 10.6023/cjoc202402003
A palladium-catalyzed asymmetric intermolecular hydrocarboxylation of trisubstituted alkenes was reported, which afforded a series of succinic acid derivatives containing two chiral centers with moderate to excellent yields, enantioselectivity, and high diastereoselectivity. The resulting dimethyl succinates can be easily converted to optically active γ-butyrolactones, demonstrating the potential application of this method.
Key words: palladium; asymmetric; hydrocarbonylation; alkene; succinic acid; carbon monoxide
| [1] | (a) Harrington, P. J.; Lodewijk, E. Org. Process Res. Dev. 1997, 1, 72. |
| [1] | (b) Magnus, N. A.; Braden, T. M.; Buser, J. Y.; DeBaillie, A. C.; Heath, P. C.; Ley, C. P.; Remacle, J. R.; Varie, D. L.; Willson, T. M. Org. Process Res. Dev. 2012, 16, 830. |
| [1] | (c) DeBaillie, A. C.; Magnus, N. A.; Laurila, M. E.; Wepsiec, J. P.; Ruble, J. C.; Petkus, J. J.; Vaid, R. K.; Niemeier, J. K.; Mick, J. F.; Gunter, T. Z. Org. Process Res. Dev. 2012, 16, 1538. |
| [1] | (d) Yamagami, T.; Moriyama, N.; Kyuhara, M.; Moroda, A.; Uemura, T.; Matsumae, H.; Moritani, Y.; Inoue, I. Org. Process Res. Dev. 2014, 18, 437. |
| [1] | (e) Wang, J.; Xu, C.; Wong, Y.; Li, Y.; Liao, F.; Jiang, T.; Tu, Y. Engineering 2019, 5, 32. |
| [1] | (f) Deeks, E. D. Clin. Drug Invest. 2019, 39, 1133. |
| [1] | (g) Ma, K. Q.; Martin, B. S.; Yin, X.; Dai, M. Nat. Prod. Rep. 2019, 36, 174. |
| [2] | (a) Consiglio, G. Helv. Chim. Acta 1976, 59, 124. |
| [2] | (b) Hayashi, T.; Tanaka, M.; Ogata, I. Tetrahedron Lett. 1978, 41, 3925. |
| [2] | (c) Cometti, G.; Chiusoli, G. P. J. Org. Chem. 1982, 236, C31. |
| [2] | (d) Chelucci, G.; Cabras, M. A.; Botteghi, C.; Marchetti, M. Tetrahedron: Asymmetry 1994, 5, 299. |
| [2] | (e) Yu, W.-Y.; Bensimon, C.; Alper, H. Chem.-Eur. J. 1997, 3, 417. |
| [2] | (f) Godard, C.; Mu?oz, B. K.; Ruiz, A.; Claver, C. Dalton Trans. 2008, 853. |
| [2] | (g) Kalck, P.; Urrutigoity, M. Inorg. Chim. Acta 2015, 431, 110. |
| [3] | (a) Franke, R.; Selent, D.; Bo?rner, A. Chem. Rev. 2012, 112, 5675. |
| [3] | (b) Dong, K.; Fang, X. Gülak, S.; Franke, R.; Spannenberg, A.; Neumann, H.; Jackstell, R.; Beller, M. Nat. Commun. 2017, 8, 14117. |
| [3] | (c) Yang, J.; Liu, J.; Neumann, H.; Franke, R.; Jackstell, R.; Beller, M. Science 2019, 366, 1514. |
| [3] | (d) Yang, J.; Liu, J.; Ge, Y.; Huang, W.; Ferretti, F.; Neumann, H.; Jiao, H.; Franke, R.; Jackstell, R.; Beller, M. Angew. Chem. Int. Ed. 2021, 133, 9613. |
| [3] | (e) Yang, J.; Wang, P.; Neumann, H.; Jackstell, R.; Beller, M. Ind. Chem. Mater. 2023, 1, 155. |
| [4] | (a) Li, J.; Shi, Y. Chem. Soc. Rev. 2022, 51, 6757. |
| [4] | (b) Shen, C.; Dong, K. Synlett 2022, 33, 815. |
| [4] | (c) Peng, J. -B.; Liu, X. -L.; Li, L.; Wu, X. Sci. China Chem. 2022, 65,441. |
| [4] | (d) Yu, R.; Cai, S. -Z.; Li, C.; Fang, X. Angew. Chem. Int. Ed. 2022, 134, e202200733. |
| [4] | (e) Li, Q.; Zhang, Y.; Liu, P.; Zhong, J.; Gong, B.; Yao, H.; Lin, A. Angew. Chem. Int. Ed. 2023, 135, e202211988. |
| [4] | (f) Yin, X.; Li, S.; Guo, K.; Song, L.; Wang, X. Eur. J. Org. Chem. 2023, 26, e202300783. |
| [5] | (a) Morello, G. R.; Zhong, H.; Chirik, P. J.; Hopmann, K. H. Chem. Sci. 2018, 9, 4977. |
| [5] | (b) Zhou, Y.; Xu, X.; Sun, H.; Tao, G.; Chang, X. -Y.; Xing, X.; Chen, B.; Xu, C. Nat. Commun. 2021, 12, 1953. |
| [5] | (c) Dannenberg, S. G.; Seth Jr, D. M.; Finfer, E. J.; Waterman, R. ACS Catal. 2022, 13, 550. |
| [6] | (a) Arnaud, R.; Vetere, V.; Barone, V. Chem. Phys. Lett. 1998, 293, 295. |
| [6] | (b) Adam, W.; Krebs, O.; Orfanopoulos, M.; Stratakis, M. J. Org. Chem. 2002, 67, 8395. |
| [7] | (a) Shing, T. K. M.; Leung, G. Y. C.; Luk, T. J. Org. Chem. 2005, 70, 7279. |
| [7] | (b) Hedberg, C.; K?llstr?m, K.; Brandt, P.; Hansen, L. K.; Andersson, P. G. J. Am. Chem. Soc. 2006, 128, 2995. |
| [7] | (c) Tolstoy, P.; Engman, M.; Paptchikhine, A.; Bergquist, J.; Church, T. L.; Leung, A. W.-M.; Andersson, P. G. J. Am. Chem. Soc. 2009, 131, 8855. |
| [7] | (d) Lu, P.; Lu, Z. Synthesis 2023, 55, 1042. |
| [8] | (a) Kong, W.; Wang, Q.; Zhu, J. Angew. Chem. Int. Ed. 2016, 55, 9714. |
| [8] | (b) Yang, B.; Qiu, Y.; Jiang, T.; Wulff, W. D.; Yin, X.; Zhu, C.; B?ckvall, J. -E. Angew. Chem. Int. Ed. 2017, 56, 4535. |
| [8] | (c) Han, A.; Tao, Y.; Reisman, S. E. Nature 2019, 573, 563. |
| [8] | (d) Chen, M.; Wang, X.; Yang, P.; Kou, X.; Ren, Z. -H.; Guan, Z.-H. Angew. Chem. Int. Ed. 2020, 59, 12199. |
| [9] | Cao, P.; Zhang, X. J. Am. Chem. Soc. 1999, 121, 7708. |
| [10] | Ren, X.; Wang, Z.; Shen, C.; Tian, X.; Tang, L.; Ji, X.; Dong, K. Angew. Chem. Int. Ed. 2021, 60, 17693. |
| [11] | (a) Ji, X.; Shen, C.; Tian, X.; Dong, K. Org. Lett. 2021, 23, 8645. |
| [11] | (b) Shi, Z.; Shen, C.; Dong, K. Chem. Eur. J. 2021, 27, 18039. |
| [11] | (c) Ji, X.; Shen, C.; Tian, X.; Zhang, H.; Ren, X., Dong, K. Angew. Chem. Int. Ed. 2022, 61, e202204156. |
| [12] | (a) Knowles, J. P.; Whiting, A. Org. Biomol. Chem. 2007, 5, 31. |
| [12] | (b) Wang, D.-S.; Chen, Q.-A.; Li, W.; Yu, C.-B.; Zhou, Y.-G.; Zhang, X. J. Am. Chem. Soc. 2010, 132, 8909. |
/
| 〈 |
|
〉 |