研究简报

二苯乙烯C-糖苷的立体选择性合成

  • 马文晋 ,
  • 刘海平 ,
  • 雷田 ,
  • 邱海平 ,
  • 袁嘉遥 ,
  • 李文玲
展开
  • 兰州交通大学化学化工学院 兰州 730070

收稿日期: 2024-04-02

  修回日期: 2024-04-23

  网络出版日期: 2024-05-11

基金资助

甘肃省自然科学基金(22JR5RA347)

Stereoselective Synthesis of Stilbene C-Glucosides

  • Wenjin Ma ,
  • Haiping Liu ,
  • Tian Lei ,
  • Haiping Qiu ,
  • Jiayao Yuan ,
  • Wenling Li
Expand
  • School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070

Received date: 2024-04-02

  Revised date: 2024-04-23

  Online published: 2024-05-11

Supported by

Natural Science Foundation of Gansu Province(22JR5RA347)

摘要

采用不同保护基的二苯乙烯单体与乙酰化糖供体在BF3•OEt2催化下进行C-糖苷化反应, 分别立体选择性地合成了相应的C-糖苷化产物, 二苯乙烯上保护基的类型直接影响10-C-β-糖苷化产物和12-C-β-糖苷化产物的产率. 二苯乙烯糖苷中间体上多个保护基的完全脱除虽未成功, 但选择性脱除糖苷上苄基保护基得到的溴代白藜芦醇10-C-β-糖苷类似物确证了C-糖苷化反应产物的结构.

本文引用格式

马文晋 , 刘海平 , 雷田 , 邱海平 , 袁嘉遥 , 李文玲 . 二苯乙烯C-糖苷的立体选择性合成[J]. 有机化学, 2024 , 44(9) : 2943 -2949 . DOI: 10.6023/cjoc202402001

Abstract

The C-glycosylation reactions of different protected stilbene monomers with anomeric acetylated glucosyl donor were promoted by BF3•OEt2, and their corresponding aryl C-glucosides were stereoselectively synthesized. The kind and stablity of phenolic protecting groups in stilbenes directly influenced the product yields of 10-C-β-glucosides and 12-C-β-glucosides. Final global deprotection of stilbene C-glucoside intermediates was unsuccessful, but the structures of 10-C-β-glucoside product were confirmed by the selective debenzylation of brominated resveratrol 10-C-β-glucoside analogue.

参考文献

[1]
For recent reviews, see: (a) Liu, C.-F. Molecules 2022, 27, 7439.
[1]
(b) Zhang, Y.Q.; Zhang, M.; Wang, Z. L.; Qiao, X.; Ye, M. Biotechnol. Adv. 2022, 60, 108030.
[1]
(c) Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Chem. Rev. 2020, 118, 1495.
[1]
(d) Bililign, T.; Griffith, B. R.; Thorson, J. S. Nat. Prod. Rep. 2005, 22, 742.
[2]
For recent reviews, see: (a) Xiao, J. B.; Capanoglu, E.; Jassbi, A. R.; Miron, A. Crit. Rev. Food Sci. 2016, 56, S29.
[2]
(b) Xu, H.; Li, Z.; Wu, Y.; Luo, D.; Qiu, L.; Xie, J.; Li, X. Chin. J. Org. Chem. 2019, 39, 1875 (in Chinese).
[2]
(徐焕基, 李哲明, 吴云秋, 罗迪, 邱莉, 谢集照, 李雪华, 有机化学, 2019, 39, 1875.)
[2]
(c) Shang, W. D.; Shi, R.; Niu, D. W. Chin. J. Chem. 2023, 41, 2217.
[2]
(d) Guo, Z. Y.; Bai, J. H.; Liu, M.; Xiong, D. C.; Ye, X. S. Chin. J. Org. Chem. 2020, 40, 3094 (in Chinese).
[2]
(郭真言, 柏金和, 刘苗, 熊德彩, 叶新山, 有机化学, 2021, 40, 3094.)
[3]
(a) Baderschneider, B.; Winterhalter, P. J. Agric. Food Chem. 2000, 48, 2681.
[3]
(b) Ito, T.; Tanaka, T.; IDo, Y.; Nakaya, K.; Inuma, M.; Riswan, S. Chem. Pharm. Bull. 2000, 48, 1001.
[3]
(c) Tanaka, T.; Ito, T.; Ido, Y.; Nakaya, K.; Iinuma, M.; Chelladurai, V. Chem. Pharm. Bul. 2001, 49, 785.
[3]
(d) Aminah, N. S.; Achmad, S. A.; Aimi, N.; Ghisalberti, E. L.; Hakim, E. H.; Kitajima, M.; Syah, Y. M.; Takayama, H. Fitoterapia 2002, 73, 501.
[3]
(e) Ito, T.; Abe, N.; Oyama, M.; Iinuma, M. Tetrahedron Lett. 2009, 50, 2516.
[3]
(f) Wang, Y.-H.; Zhang, Z.-K.; He, H.-P.; Wang, J.-S.; Zhou, H.; Ding, M.; Hao, X.-J. J. Asian Nat. Prod. Res. 2007, 9, 631.
[4]
(a) Li, W.; Li, H.; Li, Y.; Hou, Z. Angew. Chem., Int. Ed. Engl. 2006, 45, 7609.
[4]
(b) Li, W.; Chen, P.; Yang, Y.; Liu, X.; Dong, T. Tetrahedron 2016, 72, 210.
[4]
(c) Liu, M.; Dong, T.; Guan, X.; Shao, Z.; Li, W. Tetrahedron 2018, 74, 4013.
[4]
(d) Shao, Z.; Kang, X.; Li, H.; Ran, L.; Li, W. Tetrahedron Lett. 2019, 60, 151275.
[4]
(d) Ran, L.; Li, H.; Chao, G.; Kang, X.; Lei, T.; Li, W. Synlett 2020, 31, 1809.
[4]
(e) Lei, T.; Guan, X.; Kang, X.; Wang, Y.; Han, L.; Li, W. Synth. Commun. 2021, 51, 3449.
[5]
For recent reviews, see: (a) Yang, Y.; Yu, B. Chem. Rev. 2017, 117, 12281.
[5]
(b) Xia, Y.; Wang, Y.; Zhang, Z.; Gulzar, T.; Lin, Y.; Wang, J.; Zhu, D.; Yu, B. Org. Lett. 2023, 25, 6741.
[5]
(c) Zhu, W.; Sun, Q.; Chang, H.; Zhang, H.-X.; Wang, Q.; Chen, G.; He, G. Chin. J. Chem. 2022, 40, 571.
[5]
(d) Li, X.; Ma, Z.; Liu, R.; Hurevich, M.; Yang, Y. Chin. J. Chem. 2021, 39, 3309.
[5]
(e) Liao, H.; Ma, J.; Yao, H.; Liu, X.-W. Org. Biomol. Chem. 2018, 16, 1791.
[5]
(f) Xu, L. Y.; Fan, N. L.; Hu, X. G. Org. Biomol. Chem. 2020, 18, 5095.
[5]
(g) Wei, Y.; Lin, L. Q. H.; Lee, B. C.; Koh, M. J. Acc. Chem. Res. 2023, 56, 3292.
[5]
(h) Sun, Y.; Liu, J.; Lin, Q.; Yao, K.; Tong, W.; Qian, Q. Chin. J. Org. Chem. 2021, 41, 1551 (in Chinese).
[5]
(孙雨人, 刘建东, 林泉, 姚建, 童玮琦, 钱群, 有机化学, 2021, 41, 1551.)
[5]
(i) Liao, J.; Liu, H.; Sun, J. Chin. J. Org. Chem. 2017, 37, 1382 (in Chinese).
[5]
(廖进喜, 刘慧, 孙建松, 有机化学, 2017, 37, 1382.)
[6]
Ponnapalli, K. K.; Adak, A. K.; Das, A.; Song, J.-S.; Wu, S. H.; Sun, C.-M.; Lin, C.-C. Asian J. Org. Chem. 2017, 6, 1308.
[7]
(a) Kawada, T.; Asano, R.; Makino, K.; Sakuno, T. J. Wood Sci. 2002, 48, 512.
[7]
(b) Weiss, S.; Neu, P. M.; Ludwig, C.; Schober, S.; Mittelbach, M. Eur. J. Lipid Sci. Technol. 2018, 120, 1700389.
文章导航

/