新型对苯二甲酰胺衍生物的合成及抗肿瘤活性研究
收稿日期: 2024-03-29
修回日期: 2024-04-29
网络出版日期: 2024-05-30
基金资助
江苏海洋大学人才引进项目(KQ21044); 江苏省双创博士(JSSCBS20221615); 江苏海洋大学大学生实践创新计划(SY202211641640005)
Synthesis and Antitumor Activity of Novel Terephthalamide Derivatives
Received date: 2024-03-29
Revised date: 2024-04-29
Online published: 2024-05-30
Supported by
Research Project for Talent Introduction of Jiangsu Ocean University(KQ21044); Doctor of Jiangsu Double Innovation(JSSCBS20221615); College Student’s Practice Innovation Program of Jiangsu Ocean University(SY202211641640005)
为了寻找结构新颖、活性较好的抗肿瘤化合物, 采用拼合原理设计合成了一系列新型对苯二甲酰胺衍生物, 并测定了目标化合物对PANC-1(人胰腺癌细胞)、MDA-MB-231(人乳腺癌细胞)、SGC7901(人胃癌细胞)三株人类肿瘤细胞的抗增殖活性. 其中N1-(4-甲氧基苄基)-N4-(3-甲氧基苯基)-N1-(3,4,5-三甲氧基苯基)对苯二甲酰胺(TF)是抗PANC-1细胞增殖活性最佳的化合物, IC50为0.13 µmol/L, 优于阳性对照5-氟尿嘧啶(16.22 μmol/L). 表型实验显示化合物TF能够以剂量依赖的形式抑制PANC-1细胞集落形成, 并且可以减弱PANC-1细胞黏附、迁移和侵袭的作用. 这些结果表明, 化合物TF可作为一种潜在的抗肿瘤药物.
顾一飞 , 吴彩菊 , 王思琪 , 张世琳 , 陆远 , 司鑫鑫 , 蒋佰玲 . 新型对苯二甲酰胺衍生物的合成及抗肿瘤活性研究[J]. 有机化学, 2024 , 44(11) : 3497 -3504 . DOI: 10.6023/cjoc202403049
In order to search for new structural antitumor drugs, a series of terephthalamide derivatives were designed and synthesized, and their antiproliferative activities against human tumor cell lines (PANC-1, MDA-MB-231 and SGC7901) were determined. N1-(4-Methoxybenzyl)-N4-(3-methoxyphenyl)-N1-(3,4,5-trimethoxyphenyl)terephthalamide (TF) was identified as the most potent compound in antiproliferation against PANC-1 cells with the value of 0.13 μmol/L, which was better than the positive control 5-fluorouracil (16.22 μmol/L). Further mechanistic studies showed that compound TF could inhibit the clonal proliferation in a dose-dependent manner. In addition, compound TF can reduce the adhesive, migrational and invasive of PANC-1cells. These results indicated that compound TF might be developed the antitumor drug.
Key words: terephthalamide; antivity; synthesis
| [1] | Cheng M.; Yu X. F.; Lu K.; Xie L.; Wang L.; Meng F. Y.; Han X. R.; Chen X.; Liu J.; Xiong Y.; Jin J. J. Med. Chem. 2020, 63, 1216. |
| [2] | Qiao Q. H.; Du Y. H.; Xie L. H. Pharmacol. Res.-Mod. Chin. Med. 2022, 2, 100059. |
| [3] | Hamze A.; Alami M.; Provot O. Eur. J. Med. Chem. 2020, 190, 112110. |
| [4] | Ma L.; Li M. L.; Zhang Y. T.; Liu K. D. Eur. J. Med. Chem. 2023, 261, 115844. |
| [5] | Rozas I. Chem 2017, 2, 15. |
| [6] | Li Y. R.; Liu F. F.; Liu W. B.; Zhang Y. F.; Tian X. Y.; Fu X. J.; Xu Y.; Song J.; Zhang S. Y. Biochem. Pharmacol. 2022, 201, 115070. |
| [7] | Zhu H. J.; Li W. L.; Shuai W.; Liu Y.; Yang L. M.; Tan Y. C.; Zheng T. D.; Yao H.; Xu J. Y.; Zhu Z. Y.; Yang D. H.; Chen Z. S.; Xu S. T. Eur. J. Med. Chem. 2021, 216, 113316. |
| [8] | Ma N.; Qiao H.; Tao H. C.; Gan X. L.; Shan Z. L.; Chen X. M.; Zhou X. J. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101962. |
| [9] | He H. L.; Hu X.; Teng F.; Liu Z. H.; Zhang Q. S.; Feng Z. Z.; Feng Q.; Yu L. T. Bioorg. Med. Chem. Lett. 2020, 30, 126957. |
| [10] | Cao R. X.; Jia Y. P. Chin. J. Org. Chem. 2023, 43, 3304 (in Chinese). |
| [10] | (曹瑞霞, 贾玉萍, 有机化学, 2023, 43, 3304.) |
| [11] | Tan L.; Wu C. Y.; Zhang J. F.; Yu Q. W.; Wang X. Y.; Zhang L. L.; Ge M. Y.; Wang Z. J.; Ouyang L.; Wang Y. X. J. Med. Chem. 2023, 66, 3588. |
| [12] | Dai H. L.; Si X. J.; Chi L. L.; Wang H.; Gao C.; Wang Z. J.; Liu L. M.; Ma J. J.; Yu F. Q.; Liu H. M.; Ke Y.; Zhang Q. R. Chin. J. Org. Chem. 2022, 42, 3853 (in Chinese). |
| [12] | (戴洪林, 司晓杰, 池玲玲, 王浩, 高潮, 汪正捷, 刘丽敏, 马家婕, 于富强, 刘宏民, 可钰, 张秋荣, 有机化学, 2022, 42, 3853.) |
| [13] | L?ubli H.; Borsig L. Front. Immunol. 2019, 10, 2120. |
| [14] | Zhu H. J.; Tan Y. C.; He C.; Liu Y.; Duan Y. P.; Zhu W. J.; Zheng T. D.; Li D. H.; Xu J. Y.; Yang D. H.; Chen Z. S.; Xu S. T. J. Med. Chem. 2022, 65, 11187. |
| [15] | Fu D. J.; Yang J. J.; Li P.; Hou Y. H.; Huang S. N.; Tippin M. A.; Pham V.; Song L.; Zi X.; Xue W. L.; Zhang L. R.; Zhang S. Y. Eur. J. Med. Chem. 2018, 157, 50. |
/
| 〈 |
|
〉 |