研究论文

铜催化苯并呋喃并嘧啶并异吲哚衍生物的合成

  • 何姮 ,
  • 吕兰兰 ,
  • 刘建全 ,
  • 王香善
展开
  • 江苏师范大学化学与材料科学学院 江苏徐州 221116

收稿日期: 2024-04-05

  修回日期: 2024-05-14

  网络出版日期: 2024-06-13

基金资助

江苏省优秀青年基金(BK20211607); 江苏省高等学校重点学科建设计划资助项目

Copper-Catalyzed Synthesis of Benzofuropyrimidoisoindole Derivatives

  • Heng He ,
  • Lanlan Lü ,
  • Jianquan Liu ,
  • Xiangshan Wang
Expand
  • School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116
*Corresponding authors. E-mail:;

Received date: 2024-04-05

  Revised date: 2024-05-14

  Online published: 2024-06-13

Supported by

Outstanding Youth Fund of Jiangsu Province(BK20211607); Priority Academic Program Development of Jiangsu Higher Education Institutions.

摘要

2-(2-溴苯基)苯并呋喃并[3,2-d]嘧啶-4(3H)-酮与末端炔烃在CuI催化下, 首先进行Sonogashira偶联反应, 随后发生选择性的5-exo-dig炔氢胺化反应, 合成了一系列苯并呋喃并嘧啶并异吲哚衍生物. 反应具有效率高、底物范围广和优异的官能团兼容性等特点. 通过X射线单晶衍射分析, 产物呈现为单一的(E)-构型.

本文引用格式

何姮 , 吕兰兰 , 刘建全 , 王香善 . 铜催化苯并呋喃并嘧啶并异吲哚衍生物的合成[J]. 有机化学, 2024 , 44(11) : 3427 -3436 . DOI: 10.6023/cjoc202404005

Abstract

A copper-catalyzed Sonogashira coupling reaction and 5-exo-dig aminocyclization between 2-(2-bromophenyl)- benzofuro[3,2-d]pyrimidin-4(3H)-ones and terminal alkynes were disclosed. The protocol allowed access to a series of 8-benzylidene benzofuro[3',2':4,5]pyrimido[2,1-a]isoindol-6(8H)-one derivatives with high efficiency, broad substrate scope, and excellent functional group compatibility, which were shown to be of a single (E)-configuration by X-ray diffraction analysis.

参考文献

[1]
Jiang X.; Tang T.; Wang J.-M.; Chen Z.; Zhu Y.-M.; Ji S.-J. J. Org. Chem. 2014, 79, 5082.
[2]
Verma V.; Schafer L. L. J. Org. Chem. 2023, 88, 1378.
[3]
Hosseinzadeh Z.; Ramazani A.; Razzaghi-Asl N. Curr. Org. Chem. 2018, 22, 2256.
[4]
Mermer A.; Keles T.; Sirin Y. Bioorg. Chem. 2021, 114, 105076.
[5]
Parshikov I. A.; Silva E. O.; Furtado N. A. J. C. Appl. Microbiol. Biotechnol. 2014, 98, 1497.
[6]
Kharazi M.; Saien J.; Asadabadi S. Top. Curr. Chem. 2021, 380, 5.
[7]
Chainikova E.; Safiullin R.; Spirikhin L.; Erastov A. Tetrahedron Lett. 2013, 54, 2140.
[8]
Gordon E. M.; Barrett R. W.; Dower W. J.; Fodor S. P. A.; Gallop M. A. J. Med. Chem. 1994, 37, 1385.
[9]
Lai X.; Liu J.-B.; Wang Y.-C.; Qiu G. Chem. Commun. 2021, 57, 2077.
[10]
Ding Q.; Ye Y.; Fan R.; Wu J. J. Org. Chem. 2007, 72, 5439.
[11]
He Y.; Cheng C.; Chen B.; Duan K.; Zhuang Y.; Yuan B.; Zhang M.; Zhou Y.; Zhou Z.; Su Y.-J.; Cao R.; Qiu L. Org. Lett. 2014, 16, 6366.
[12]
Li B.; Zhang J.; Li L.; Chen G. Chem. Sci. 2021, 12, 2504.
[13]
Malet-Martino M.; Jolimaitre P.; Martino R. Curr. Med. Chem.: Anti-Cancer Agents 2002, 2, 267.
[14]
van Kuilenburg A. B. P. Eur. J. Cancer 2004, 40, 939.
[15]
G?lcü A.; Muslu H.; K?l??aslan D.; ?e?me M.; Eren ?.; Ata? F.; Demirta? ?. J. Mol. Struct. 2016, 1119, 96.
[16]
Rashid H. u.; Martines M. A. U.; Duarte A. P.; Jorge J.; Rasool S.; Muhammad R.; Ahmad N.; Umar M. N. RSC Adv. 2021, 11, 6060.
[17]
Zhuang J.; Ma S. ChemMedChem 2020, 15, 1875.
[18]
Khanam H.; Shamsuzzaman, Eur. J. Med. Chem. 2015, 97, 483.
[19]
Xu Z.; Xu D.; Zhou W.; Zhang X. Curr. Top. Med. Chem. 2022, 22, 64.
[20]
Abbas A. A.; Dawood K. M. Expert Opin. Drug Discovery 2022, 17, 1357.
[21]
Cottineau B.; Toto P.; Marot C.; Pipaud A.; Chenault J. Bioorg. Med. Chem. Lett. 2002, 12, 2105.
[22]
Xie Y.-S.; Kumar D.; Bodduri V. D. V.; Tarani P. S.; Zhao B.-X.; Miao J.-Y.; Jang K.; Shin D.-S. Tetrahedron Lett. 2014, 55, 2796.
[23]
Koca M.; Servi S.; Kirilmis C.; Ahmedzade M.; Kazaz C.; ?zbek B.; ?tük G. Eur. J. Med. Chem. 2005, 40, 1351.
[24]
Xie F.; Zhu H.; Zhang H.; Lang Q.; Tang L.; Huang Q.; Yu L. Eur. J. Med. Chem. 2015, 89, 310.
[25]
Spaniol M.; Bracher R.; Ha H. R.; Follath F.; Kr?henbühl S. J. Hepatol. 2001, 35, 628.
[26]
Tyltin A. K.; Kovtunenko V. A.; Rytova N. N.; Babichev F. S. Chem. Heterocycl. Compd. 1977, 13, 912.
[27]
Kysil A. I.; Voitenko Z. V.; Wolf J.-G. Collect. Czech. Chem. Commun. 2008, 73, 247.
[28]
Voitenko Z. V.; Kysil A. I.; Wolf J. G. C. R. Chim. 2007, 10, 813.
[29]
He H.; Liu J.-Q.; Wang X.-S. Org. Biomol. Chem. 2023, 21, 7886.
[30]
Geng X.; Shatskiy A.; Alvey G. R.; Liu J.-Q.; K?rk?s M. D.; Wang X.-S. Org. Lett. 2022, 24, 9194.
[31]
Chen Y.; Shatskiy A.; Liu J.-Q.; K?rk?s M. D.; Wang X.-S. Org. Lett. 2021, 23, 7555.
[32]
Wang Y.-C.; Chen X.; Alvey G. R.; Shatskiy A.; Liu J.-Q.; K?rk?s M. D.; Wang X.-S. Org. Chem. Front. 2022, 9, 4158.
[33]
Xu L.; Liu X.; Alvey G. R.; Shatskiy A.; Liu J.-Q.; K?rk?s M. D.; Wang X.-S. Org. Lett. 2022, 24, 4513.
[34]
Jiang W.; Li Y.; Liu J.-Q.; Wang X.-S. Org. Lett. 2023, 25, 5123.
[35]
Geng X.; He H.; Shatskiy A.; Stepanova E. V.; Alvey G. R.; Liu J.-Q.; K?rk?s M. D.; Wang X.-S. J. Org. Chem. 2023, 88, 12738.
[36]
Ashfaq U. A.; Javed T.; Rehman S.; Nawaz Z.; Riazuddin S. Virol. J. 2011, 8, 163.
[37]
Cao X.; Zhang Z.; Li J.; Shi B.; Li M.; Zhang G.; Zhang X. J. Org. Chem. 2022, 87, 13672.
[38]
Xiong Y.; Zhang G. Chin. J. Org. Chem. 2023, 43, 1890 (in Chinese).
[38]
(熊阳, 张国柱, 有机化学, 2023, 43, 1890.)
[39]
Song D.; Moon H.; Jung K.; Yeom M.; Kim H.; Han S.; An D.; Oh J.; Kim J.; Park B.; Kang B. Virol. J. 2011, 8, 1.
文章导航

/