综述与进展

镍催化1,3-二烯的不对称氢官能团化反应研究进展

  • 龙姣 ,
  • 刘白雪 ,
  • 张双双 ,
  • 朱园园 ,
  • 古双喜
展开
  • a 武汉工程大学化工与制药学院 绿色化工过程教育部重点实验室 新型反应器与绿色化学工艺湖北省重点实验室 武汉 430205
    b 武汉工程大学化学与环境工程学院 武汉 430205
    c 武汉工程大学药物研究院 武汉 430205

收稿日期: 2024-03-15

  修回日期: 2024-06-05

  网络出版日期: 2024-06-24

基金资助

国家自然科学基金(22377097); 湖北省自然科学基金(2021CFB556); 湖北省教育厅科学研究计划(Q20221513); 磷资源开发利用教育部工程研究中心开放基金(LCX202305)

Recent Advances in Nickel-Catalyzed Asymmetric Hydrofunctionalization of 1,3-Dienes

  • Jiao Long ,
  • Baixue Liu ,
  • Shuangshuang Zhang ,
  • Yuanyuan Zhu ,
  • Shuangxi Gu
Expand
  • a Key Laboratory for Green Chemical Process of Ministry of Education & Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205
    b School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205
    c Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205
*Corresponding authors. E-mail:;

Received date: 2024-03-15

  Revised date: 2024-06-05

  Online published: 2024-06-24

Supported by

National Natural Science Foundation of China(22377097); Natural Science Foundation of Hubei Province of China(2021CFB556); Science Research Foundation of Hubei Provincial Department of Education(Q20221513); Open Fund of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education(LCX202305)

摘要

1,3-二烯类化合物的区域选择性不对称氢官能团化反应是一种步骤及原子经济性地合成手性烯丙基或者高烯丙基化合物的方法, 在天然产物和生物活性分子的合成中有着重要的应用价值. 近年来, 丰产金属因其廉价易得、环境友好等优良特性在有机合成领域引起了广泛的关注. 本综述总结了近年来丰产金属镍催化的1,3-二烯与亲核试剂的不对称氢官能团化反应研究进展和现状, 对相关反应的底物范围、局限性以及反应机理进行了概述. 根据亲核试剂种类的不同, 主要包括不对称氢碳化反应、不对称氢胺化反应、不对称氢膦化反应以及不对称氢烷氧基化反应等.

本文引用格式

龙姣 , 刘白雪 , 张双双 , 朱园园 , 古双喜 . 镍催化1,3-二烯的不对称氢官能团化反应研究进展[J]. 有机化学, 2024 , 44(11) : 3309 -3320 . DOI: 10.6023/cjoc202403021

Abstract

The regioselective asymmetric hydrofunctionalization of 1,3-dienes is a step- and atom-economic method for the synthesis of chiral allylic or homoallylic compounds, which has important application value in the synthesis of natural products and bioactive molecules. Over the years, earth-abundant transition metals have attracted extensive attention in the field of organic synthesis due to their excellent characteristics, such as affordability, accessibility, and environmental friendliness. In this review, the recent progress and status of asymmetric hydrofunctionalization of 1,3-dienes with different nucleophiles via nickel catalysis is summarized. The substrate scope, limitations and mechanism characteristics of related reactions are discussed. According to the different kinds of nucleophiles, it mainly includes asymmetric hydrocarbonation, asymmetric hydroamina- tion, asymmetric hydrophosphinylation and asymmetric hydroalkoxylation.

参考文献

[1]
(a) Newhouse T.; Baran P. S.; Hoffmann R. W. Chem. Soc. Rev. 2009, 38, 3010.
[1]
(b) Noyori R. Nat. Chem. 2009, 1, 5.
[2]
For selected reviews on hydrofunctionalization of alkenes, see: (a) Crossley S. W. M.; Obradors C.; Martinez R. M.; Shenvi R. A. Chem. Rev. 2016, 116, 8912.
[2]
(b) Xiao L.-J.; Ye M.-C.; Zhou Q.-L. Synlett 2018, 30, 361.
[2]
(c) Fernández D. F.; Mascare?as J. L.; López F. Chem. Soc. Rev. 2020, 49, 7378.
[2]
(d) Liu R. Y.; Buchwald S. L. Acc. Chem. Res. 2020, 53, 1229.
[2]
(e) Zhang W.; Wang Z.; Bai X.; Li B. Chin. J. Org. Chem. 2020, 40, 1087 (in Chinese).
[2]
(张雯雯, 王紫璇, 白小燕, 李必杰, 有机化学, 2020, 40, 1087.)
[2]
(f) Biswas S.; Parsutkar M. M.; Jing S. M.; Pagar V. V.; Herbort J. H.; RajanBabu T. V. Acc. Chem. Res. 2021, 54, 4545.
[2]
(g) Zhu S.; Tao R.; He Y. Synlett 2021, 33, 224.
[2]
(h) He Y.; Chen J.; Jiang X.; Zhu S. Chin. J. Chem. 2022, 40, 651.
[2]
(i) Zhang Z.; Bera S.; Fan C.; Hu X. J. Am. Chem. Soc. 2022, 144, 7015.
[3]
For selected reviews on hydrofunctionalization of alkynes, see: (a) Lalic G.; Suess A. Synlett 2016, 27, 1165.
[3]
(b) Zheng Y.; Zi W. Tetrahedron Lett. 2018, 59, 2205.
[3]
(c) Guo J.; Cheng Z.; Chen J.; Chen X.; Lu Z. Acc. Chem. Res. 2021, 54, 2701.
[3]
(d) Nu?ez Bahena E.; Schafer L. L. ACS Catal. 2022, 12, 14934.
[3]
(e) Torres-Calis A.; García J. J. ACS Omega 2022, 7, 37008.
[4]
For a selected review on hydrofunctionalization of allenes, see: Blieck R.; Taillefer M.; Monnier F. Chem. Rev. 2020, 120, 13545.
[5]
Perry G. J. P.; Jia T.; Procter D. J. ACS Catal. 2019, 10, 1485.
[6]
Adamson N. J.; Malcolmson S. J. ACS Catal. 2020, 10, 1060.
[7]
Flaget A.; Zhang C.; Mazet C. ACS Catal. 2022, 12, 15638.
[8]
Li G.; Huo X.; Jiang X.; Zhang W. Chem. Soc. Rev. 2020, 49, 2060.
[9]
Cheng Z.; Guo J.; Lu Z. Chem. Commun. 2020, 56, 2229.
[10]
For representative works on Rh-catalyzed asymmetric hydrofunctionalization of 1,3-dienes, see: (a) Roberts C. C.; Matías D. M.; Goldfogel M. J.; Meek S. J. J. Am. Chem. Soc. 2015, 137, 6488.
[10]
(b) Goldfogel M. J.; Meek S. J. Chem. Sci. 2016, 7, 4079.
[10]
(c) Marcum J. S.; Roberts C. C.; Manan R. S.; Cervarich T. N.; Meek S. J. J. Am. Chem. Soc. 2017, 139, 15580.
[10]
(d) Yang X.-H.; Dong V. M. J. Am. Chem. Soc. 2017, 139, 1774.
[10]
(e) Yang X.-H.; Davison R. T.; Dong V. M. J. Am. Chem. Soc. 2018, 140, 10443.
[10]
(f) Yang X.-H.; Davison R. T.; Nie S.-Z.; Cruz F. A.; McGinnis T. M.; Dong V. M. J. Am. Chem. Soc. 2019, 141, 3006.
[11]
For representative works on Pd-catalyzed asymmetric hydrofunctionalization of 1,3-dienes, see: (a) O. L?ber; M. Kawatsura; Hartwig J. F. J. Am. Chem. Soc. 2001, 123, 4366.
[11]
(b) Adamson N. J.; Hull E.; Malcolmson S. J. J. Am. Chem. Soc. 2017, 139, 7180.
[11]
(c) Adamson N. J.; Wilbur K. C. E.; Malcolmson S. J. J. Am. Chem. Soc. 2018, 140, 2761.
[11]
(d) Park S.; Malcolmson S. J. ACS Catal. 2018, 8, 8468.
[11]
(e) Park S.; Adamson N. J.; Malcolmson S. J. Chem. Sci. 2019, 10, 5176.
[12]
(a) Tasker S. Z.; Standley E. A.; Jamison T. F. Nature 2014, 509, 299.
[12]
(b) Ananikov V. P. ACS Catal. 2015, 5, 1964.
[13]
(a) Clement N. D.; Routaboul L.; Grotevendt A.; Jackstell R.; Beller M. Chem. Eur. J. 2008, 14, 7408.
[13]
(b) Behr A.; Becker M.; Beckmann T.; Johnen L.; Leschinski J.; Reyer S. Angew. Chem., Int. Ed. 2009, 48, 3598.
[14]
Wang Y.; Liu J.; He Z. Chin. J. Org. Chem. 2023, 43, 2614 (in Chinese).
[14]
(王玉超, 刘晋彪, 何智涛, 有机化学, 2023, 43, 2614.)
[15]
Sato Y.; Saito N.; Mori M. J. Am. Chem. Soc. 2000, 122, 2371.
[16]
Yang Y.; Zhu S.-F.; Duan H.-F.; Zhou C.-Y.; Wang L.-X.; Zhou Q.-L. J. Am. Chem. Soc. 2007, 129, 2248.
[17]
Cheng L.; Li M.-M.; Xiao L.-J.; Xie J.-H.; Zhou Q.-L. J. Am. Chem. Soc. 2018, 140, 11627.
[18]
(a) Xiao L.-J.; Fu X.-N.; Zhou M.-J.; Xie J.-H.; Wang L.-X.; Xu X.-F.; Zhou Q.-L. J. Am. Chem. Soc. 2016, 138, 2957.
[18]
(b) Xiao L. J.; Cheng L.; Feng W. M.; Li M. L.; Xie J. H.; Zhou Q. L. Angew. Chem., Int. Ed. 2017, 57, 461.
[19]
Shao W.; Besnard C.; Guénée L.; Mazet C. J. Am. Chem. Soc. 2020, 142, 16486.
[20]
Liao L.; Zhang Y.; Wu Z.-W.; Ye Z.-T.; Zhang X.-X.; Chen G.; Yu J.-S. Chem. Sci. 2022, 13, 12519.
[21]
Bogdanovic B.; Henc B.; Meister B.; Pauling H.; Wilke G. A. Angew. Chem., Int. Ed. 1972, 11, 1023.
[22]
Siv C.; Peiffer G.; Triantaphylides C.; Denis P.; Mortreux A.; Petit F.; Buono G. J. Org. Chem. 1985, 50, 1781.
[23]
Zhang A.; RajanBabu T. V. J. Am. Chem. Soc. 2006, 128, 54.
[24]
(a) Saha B.; Smith C. R.; RajanBabu T. V. J. Am. Chem. Soc. 2008, 130, 9000.
[24]
(b) Shingate B. B.; Hazra B. G. Chem. Rev. 2014, 114, 6349.
[25]
Cheng L.; Li M.-M.; Li M.-L.; Xiao L.-J.; Xie J.-H.; Zhou Q.-L. CCS Chem. 2022, 4, 2612.
[26]
Li J.-F.; Pan D.; Wang H.-R.; Zhang T.; Li Y.; Huang G.; Ye M. J. Am. Chem. Soc. 2022, 144, 18810.
[27]
Saha B.; RajanBabu T. V. Org. Lett. 2006, 8, 4657.
[28]
Yu R.; Xing Y.; Fang X. Org. Lett. 2021, 23, 930.
[29]
Shirakura M.; Suginome M. Angew. Chem., Int. Ed. 2010, 49, 3827.
[30]
Baker R.; Halliday D. E.; Smith T. N. J. Chem. Soc. D 1971, 23, 1583.
[31]
Pawlas J.; Nakao Y.; Kawatsura M.; Hartwig J. F. J. Am. Chem. Soc. 2002, 124, 3669.
[32]
Tran G.; Shao W.; Mazet C. J. Am. Chem. Soc. 2019, 141, 14814.
[33]
Long J.; Wang P.; Wang W.; Li Y.; Yin G. iScience 2019, 22, 369.
[34]
For selected reviews on hydrophosphinylation, see: (a) Xu Q.; Han L-B. J. Organomet. Chem. 2011, 696, 130.
[34]
(b) Zhao D.; Wang R. Chem. Soc. Rev. 2012, 41, 2095.
[34]
(c) Pullarkat S. Synthesis 2015, 48, 493.
[34]
(d) Trofimov B.; Gusarova N.; Chernysheva N. Synthesis 2017, 49, 4783.
[35]
For representative works on transition metal-catalyzed hydrophosphinylation, see: (a) Nie S.-Z.; Davison R. T.; Dong V. M. J. Am. Chem. Soc. 2018, 140, 16450.
[35]
(b) Lu Z.-W.; Zhang H.; Yang Z.; Ding N.; Meng L.; Wang J. ACS Catal. 2019, 9, 1457.
[35]
(c) Dai Q.; Liu L.; Qian Y.; Li W.; Zhang J. Angew. Chem., Int. Ed. 2020, 59, 20645.
[35]
(d) Yang Z.; Gu X.; Han L.-B.; Wang J. Chem. Sci. 2020, 11, 7451.
[35]
(e) Duan S.; Pan A.; Du Y.; Zhu G.; Tian X.; Zhang H.; Walsh P. J.; Yang X. ACS Catal. 2023, 13, 10887.
[36]
Long J.; Li Y.; Zhao W.; Yin G. Chem. Sci. 2022, 13, 1390.
[37]
(a) González-Belman O.; Brotons-Rufes A.; Tomasini M.; Falivene L.; Caporaso L.; Jiménez-Halla J.; Poater A. Catalysts 2021, 11, 704.
[37]
(b) Nanda S. K.; Mallik R. Chem. Eur. J. 2021, 27, 15571.
[38]
Kennemur J. L.; Maji R.; Scharf M. J.; List B. Chem. Rev. 2021, 121, 14649.
[39]
Tran G.; Mazet C. Org. Lett. 2019, 21, 9124.
[40]
Mifleur A.; Suisse I.; Mortreux A.; Sauthier M. Catal. Lett. 2021, 151, 27.
[41]
Li Q.; Wang Z.; Dong V. M.; Yang X.-H. J. Am. Chem. Soc. 2023, 145, 3909.
[42]
(a) Liu C.; Xie J.; Wu W.; Wang M.; Chen W.; Idres S. B.; Rong J.; Deng L.-W.; Khan S. A.; Wu J. Nat. Chem. 2021, 13, 451.
[42]
(b) Feng K.; Chen J.; Gu S.; Wang H.; Chen F. Chin. J. Org. Chem. 2024, 44, 378 (in Chinese).
[42]
(冯康博, 陈炯, 古双喜, 王海峰, 陈芬儿, 有机化学, 2024, 44, 378.)
[42]
(c) Liu D.; Zhu Y.; Gu S.; Chen F. Chin. J. Org. Chem. 2021, 41, 1002 (in Chinese).
[42]
(刘玎, 朱园园, 古双喜, 陈芬儿, 有机化学, 2021, 41, 1002.)
文章导航

/