亚磷酸作为还原剂参与的有机反应研究进展
收稿日期: 2024-04-10
修回日期: 2024-05-10
网络出版日期: 2024-06-24
基金资助
国家自然科学基金(22378107); 湖南省自然科学基金(2024JJ5135); 湖南省自然科学基金(2022JJ30240)
Advances in Organic Reactions Using Phosphorus Acid as Reducing Agent
Received date: 2024-04-10
Revised date: 2024-05-10
Online published: 2024-06-24
Supported by
National Natural Science Foundation of China(22378107); Natural Science Foundation of Hunan Province(2024JJ5135); Natural Science Foundation of Hunan Province(2022JJ30240)
有机还原反应是最基本的化学反应之一, 被广泛应用于医药、农药、染料以及其它各类精细化学品的合成. 目前常见的还原剂主要包括氢气、金属化物(硼氢化物、氢化铝锂、烷基铝, 及金属等)、活泼金属、硅烷和肼等. 亚磷酸是一种常见的工业化学品, 具有还原性, 且来源丰富, 廉价, 易于保存. 目前使用亚磷酸作为还原剂通常不需要过渡金属参与, 具有成本低,、 条件简单以及后处理简便等优势. 然而, 与其它主要还原剂在有机还原反应中的大量应用相比, 亚磷酸作为还原剂参与的有机反应非常有限. 综述了近年来以亚磷酸作为还原剂参与的有机还原反应, 主要从反应类型、底物适用范围以及反应机理等方面进行阐述, 并初步讨论了该领域未来的发展趋势.
肖晶 , 谢毓翔 , 韩立彪 . 亚磷酸作为还原剂参与的有机反应研究进展[J]. 有机化学, 2024 , 44(12) : 3702 -3712 . DOI: 10.6023/cjoc202404015
Organic reduction reactions are one of the most basic chemical reactions, which are widely used in the synthesis of pharmaceuticals, agriculture chemicals, dye industry and fine chemicals. Common reducing agents mainly include hydrogen, metallic compounds (borohydride, lithium aluminum hydride, alkyl aluminium and low-valence metals, etc.), active metals, silane and hydrazine. Phosphorus acid is a common chemical in industry, it is also cheap, easy to access, and easy to use. At present, reactions using phosphorus acid as reducing agents usually do not require transition-metals, and has the advantages of low-cost, simple conditions and simple work-up procedures. However, compared with the extensive application of those common reducing agents in organic reduction reactions, the organic reactions using phosphorus acid as reducing agent are very limited. Organic reduction reactions which are using phosphorus acid as reducing agent are summarized from aspects of reaction type, the scope of substrate and reaction mechanism. Prospects in this field are also discussed.
Key words: phosphorus acid; iodine; reducing agent; reduction reaction; metal-free
| [1] | Hu Y.-F.; Lin G.-Q. Modern Organic Reactions: Reduction, Chemical Industry Press, Beijing, 2013 (in Chinese). |
| [1] | (胡跃飞, 林国强, 现代有机反应: 还原反应, 化学工业出版社, 北京, 2013.) |
| [2] | Irrgang T.; Kempe R. Chem. Rev. 2020, 120, 9583. |
| [3] | (a) Chung J. Y. L.; Meng D.; Shevlin M.; Gudipati V.; Chen Q.; Liu Y.; Lam Y.-H.; Dumas A.; Scott J.; Tu Q.; Xu F. J. Org. Chem. 2020, 85, 994. |
| [3] | (b) Ashby E. C.; Boone J. R. J. Am. Chem. Soc. 1976, 98, 5524. |
| [3] | (c) Heinsohn G. E.; Ashby E. C. J. Org. Chem. 1973, 38, 4232. |
| [4] | (a) Aqad E.; Lakshmikantham M. V.; Cava M. P. Org. Lett. 2004, 6, 3039. |
| [4] | (b) Bueno-López A.; García-García A.; Illán-Gómez M. J.; Linares-Solano A.; Lecea C. S.-M. D. Ind. Eng. Chem. Res. 2007, 46, 3891. |
| [5] | Dams R.; Malinowski M.; Westdorp I.; Geise H. J. Org. Chem. 1982, 47, 248. |
| [6] | Pesti J.; Larson G. L. Org. Process Res. Dev. 2016, 20, 1164. |
| [7] | Espinosa J. C.; Navalon S.; Alvaro M.; Dhakshinamoorthy A.; Garcia H. ACS Sustainable Chem. Eng. 2018, 6, 5607. |
| [8] | Gerhard B.; Werner K.; Gerhard R.; Thomas H. Phosphorus Compounds, Inorganic, Wiley-VCH, Weinheim, 2000. |
| [9] | Liang X.-S.; Xiao Y.; Wu L.-Q. CN 103708433, 2013. |
| [10] | Zhang L.; Koreeda M. J. Am. Chem. Soc. 2004, 126, 13190. |
| [11] | Dai X.-J.; Li C.-J. J. Am. Chem. Soc. 2016, 138, 5433. |
| [12] | Robins M. J.; Wilson J. S.; Hansske F. J. Am. Chem. Soc. 1983, 105, 4059. |
| [13] | Milne J. E.; Storz T.; Colyer J. T.; Thiel O. R.; Seran M. D.; Larsen R. D.; Murry J. A. J. Org. Chem. 2011, 76, 9519. |
| [14] | West C. T.; Donnelly S. J.; Kooistra D. A.; Doyle M. P. J. Org. Chem. 1973, 38, 2675. |
| [15] | Clemmensen E. Chem. Ber. 1913, 46, 1837. |
| [16] | Bradlow H. L.; VanderWerf C. A. J. Am. Chem. Soc. 1947, 69, 1254. |
| [17] | Huang M. J. Am. Chem. Soc. 1949, 71, 3301. |
| [18] | Hutchins R. O.; Maryanoff B.; Milewski C. J. Am. Chem. Soc. 1971, 93, 1793. |
| [19] | (a) Blackwell J.; Hickinbottom W. J. J. Chem. Soc. 1961, 1405. |
| [19] | (b) Gribble G.W.; Kelly W. J.; Emery S. E. Synthesis 1978, 763. |
| [19] | (c) Ketcha D. M.; Lieurance B. A.; Homan D. F. J.; Gribble G. W. J. Org. Chem. 1989, 54, 4350. |
| [20] | (a) Kelly T. R.; Kim M. H. J. Am. Chem. Soc. 1994, 116, 7072. |
| [20] | (b) Srikrishna A.; Viswajanani R.; Sattigeri J. A.; Yelamaggad C. V. Tetrahedron Lett. 1995, 36, 2347. |
| [21] | (a) Smonou I. Tetrahedron Lett. 1994, 35, 2071. |
| [21] | (b) Fry J. L.; Orfanopoulos M.; Adlington M. G.; Dittman W. P.; Silverman S. B. J. Org. Chem. 1978, 43, 374. |
| [21] | (c) Chandrasekhar S.; Reddy C. R.; Babu B. N. J. Org. Chem. 2002, 67, 9080. |
| [22] | (a) Lee W. Y.; Park C. H.; Kim H. J.; Kim S. J. Org. Chem. 1994, 59, 878. |
| [22] | (b) Lee W. Y.; Park C. H.; Kim Y. D. J. Org. Chem. 1992, 57, 4074. |
| [23] | (a) Prakash G. K. S.; Do C.; Mathew T.; Olah G. A. Catal. Lett. 2011, 141, 507. |
| [23] | (b) Sakai N.; Nagasawa K.; Ikeda R.; Nakaike Y.; Konakahara T. Tetrahedron Lett. 2011, 52, 3133. |
| [23] | (c) Jumbam N. D.; Makaluza S.; Masamba W. Bull. Chem. Soc. Ethiop. 2018, 32, 179. |
| [24] | Deng J.; Xiao J.; Wang X.; Luo H.; Jia Z.; Wang J. Tetrahedron 2022, 113, 132755. |
| [25] | Savela R.; W?rn? J.; Murzin D. Y.; Leino R. Catal. Sci. Technol. 2015, 5, 2406. |
| [26] | Li Z.; Sheng C.; Yang C.; Qiu H. Org. Prep. Proced. Int. 2007, 39, 608. |
| [27] | Keinan E.; Perez D.; Sahai M.; Shvily R. J. Org. Chem. 1990, 55, 2927. |
| [28] | Bhor M. D.; Panda A. G.; Nandurkar N. S.; Bhanage B. M. Tetrahedron Lett. 2008, 49, 6475. |
| [29] | Zeng C.; Shen G.; Yang F.; Chen J.; Zhang X.; Gu C.; Zhou Y.; Fan B. Org. Lett. 2018, 20, 6859. |
| [30] | Lv F.; Xiao J.; Xiang J.; Guo F.; Tang Z.-L.; Han L.-B. J. Org. Chem. 2021, 86, 3081. |
| [31] | He T.; Zhang C.; Zhang L.; Du A. Nano Res. 2019, 12, 1817. |
| [32] | Liu W. J.; Qian T. T.; Jiang H. Chem. Eng. J. 2014, 236, 448. |
| [33] | (a) Kandagatla B.; Raju V. V. N. K. V. P.; Reddy G. M.; Rao S. C.; Iqbal J.; Bandichhor R.; Oruganti S. Tetrahedron Lett. 2012, 53, 7125. |
| [33] | (b) Larock R. C. Comprehensive Organic Transformations, John Wiley & Sons, New York, 1999. |
| [34] | Krapcho J.; Turk C. F.; Piala J. J. J. Med. Chem. 1968, 11, 361. |
| [35] | (a) Formenti D.; Ferretti F.; Scharnagl F. K.; Beller M. Chem. Rev. 2019, 119, 2611. |
| [35] | (b) Wang J.; Zhang Y. J.; Diao J. Y.; Zhang J.; Liu H.; Su D. Chin. J. Catal. 2018, 39, 79. |
| [36] | Wu G. G.; Chen F. X.; LaFrance D.; Liu Z.; Greene S. G.; Wong Y.-S.; Xie J. Org. Lett. 2011, 13, 5220. |
| [37] | (a) Quin L. D. A Guide to Organophosphorus Chemistry, Wiley, New York, 2000. |
| [37] | (b) Kamer P. C. J.; van Leeuwen P. W. N. M. Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis, Wiley, Chichester, U.K., 2012. |
| [38] | Broger E. A.; Switzerland M. US 4249023, 1981. |
| [39] | Kuroboshi M.; Yano T.; Kamenoue S.; Kawakubo H.; Tanaka H. Tetrahedron 2011, 67, 5825. |
| [40] | Natoli J. G.; Parlin N. J. US 3405180, 1968. |
| [41] | Vilas M. C.; Parlin N. J. US 3855310, 1974. |
| [42] | Xiao J.; Wang J.; Zhang H.; Zhang J.; Han L.-B. J. Org. Chem. 2023, 88, 3909. |
| [43] | McGarrigle E. M.; Myers E. L.; Illa O.; Shaw M. A.; Riches S. L.; Aggarwal V. K. Chem. Rev. 2007, 107, 5841. |
| [44] | (a) Jang Y.; Kim K. T.; Jeon H. B. J. Org. Chem. 2013, 78, 6328; |
| [44] | (b) Sanz R.; Escribano J.; Aguado R.; Pedrosa M. R.; Arnáiz F. J. Synthesis 2004, 35, 1629. |
| [45] | Ding F.; Jiang Y.; Gan S.; Bao R. L. Y.; Lin K.; Shi L. Eur. J. Org. Chem. 2017, 2017, 3427. |
| [46] | Enthaler S.; Krackl S.; Irran E.; Inoue S. Catal. Lett. 2012, 142, 1003. |
| [47] | García N.; Fernandez-Rodriguez M. A.; Garcia-Garcia P.; Pedrosa M. R.; Arnaiz F. J.; Sanz R. RSC Adv. 2016, 6, 27083. |
| [48] | (a) Alonso F.; Beletskaya I. P.; Yus M. Chem. Rev. 2002, 102, 4009. |
| [48] | (b) Chelucci G.; Baldino S.; Pinna G. A.; Pinna G. Curr. Org. Chem. 2012, 16, 2921. |
| [49] | (a) Inoue K.; Sawada A.; Shibata I.; Baba A. Tetrahedron Lett. 2001, 42, 4661. |
| [49] | (b) Rahm A.; Amardeil R.; Degueil-Castaing M. J. Organomet. Chem. 1989, 371, 4. |
| [50] | Yang J.; Brookhart M. Adv. Synth. Catal. 2009, 351, 175. |
| [51] | Krishnamurthy S.; Brown H. C. J. Org. Chem. 1980, 45, 849. |
| [52] | Krishnamurthy S.; Brown H. C. J. Org. Chem. 1982, 47, 276. |
| [53] | Xiao J.; Ma Y.; Wu X.; Gao J.; Tang Z.; Han L.-B. RSC Adv. 2019, 9, 22343. |
| [54] | (a) Eren G.; ünlü S.; Nunez M.-T.; Labeaga L.; Ledo F.; Entrena A.; Banoglu E.; Costantino G.; Sahin M. F. Bioorg. Med. Chem. 2010, 18, 6367. |
| [54] | (b) Xue N.; Zhou Y.; Wang G.; Miao W.; Qu J. J. Heterocycl. Chem. 2010, 47, 15. |
| [54] | (c) Ucar H.; Derpoorten K.V.; Cacciaguerra S.; Spampinato S.; Stables J. P. J. Med. Chem. 1998, 41, 1138. |
| [55] | Noujima A.; Mitsudome T.; Mizugaki T.; Jitsukawa K.; Kaneda K. Green Chem. 2013, 15, 608. |
| [56] | Ram R. N.; Soni V. K. J. Org. Chem. 2013, 78, 11935. |
| [57] | Zhang W.; Li Q.; Shi T. CN 107188864, 2019. |
| [58] | Wang X.; Xiang J.; Wang J.; Yu Z.; Tang Z.-L.; Xiao J. Tetrahedron 2022, 127, 133094. |
| [59] | Li P.; Wischert R.; Métivier P. Angew. Chem., Int. Ed. 2017, 56, 15989. |
| [60] | Montchamp J.-L. Acc. Chem. Res. 2014, 47, 77. |
| [61] | Koshti V.; Gaikwad S.; Chikkali S. H. Coord. Chem. Rev. 2014, 265, 52. |
| [62] | Cheng R.; Li C.-J. Angew. Chem., Int. Ed. 2023, 62, e202301730. |
| [63] | Zhu J.; Ye Y.; Huang Y. Organometallics 2022, 41, 2342. |
| [64] | Wang Jie; Xiao J.; Tang Z.-L.; Lan D.-H.; Han L.-B. J. Org. Chem. 2024, 89, 5109. |
| [65] | (a) Atsumi S.; Hanai T.; Liao J. C. Nature 2008, 451, 86. |
| [65] | (b) Ma S. K.; Gruber J.; Davis C.; Newman L.; Gray D.; Wang A.; Grate J.; Huisman G. W.; Sheldon R. A. Green Chem. 2010, 12, 81. |
| [66] | Tensi L.; Macchioni A. ACS Catal. 2020, 10, 7945. |
/
| 〈 |
|
〉 |