有机化学 ›› 2024, Vol. 44 ›› Issue (12): 3702-3712.DOI: 10.6023/cjoc202404015 上一篇 下一篇
综述与进展
收稿日期:
2024-04-10
修回日期:
2024-05-10
发布日期:
2024-06-24
基金资助:
Jing Xiaoa,*(), Yuxiang Xiea, Libiao Hanb,c,*()
Received:
2024-04-10
Revised:
2024-05-10
Published:
2024-06-24
Contact:
*E-mail:Supported by:
文章分享
有机还原反应是最基本的化学反应之一, 被广泛应用于医药、农药、染料以及其它各类精细化学品的合成. 目前常见的还原剂主要包括氢气、金属化物(硼氢化物、氢化铝锂、烷基铝, 及金属等)、活泼金属、硅烷和肼等. 亚磷酸是一种常见的工业化学品, 具有还原性, 且来源丰富, 廉价, 易于保存. 目前使用亚磷酸作为还原剂通常不需要过渡金属参与, 具有成本低,、 条件简单以及后处理简便等优势. 然而, 与其它主要还原剂在有机还原反应中的大量应用相比, 亚磷酸作为还原剂参与的有机反应非常有限. 综述了近年来以亚磷酸作为还原剂参与的有机还原反应, 主要从反应类型、底物适用范围以及反应机理等方面进行阐述, 并初步讨论了该领域未来的发展趋势.
肖晶, 谢毓翔, 韩立彪. 亚磷酸作为还原剂参与的有机反应研究进展[J]. 有机化学, 2024, 44(12): 3702-3712.
Jing Xiao, Yuxiang Xie, Libiao Han. Advances in Organic Reactions Using Phosphorus Acid as Reducing Agent[J]. Chinese Journal of Organic Chemistry, 2024, 44(12): 3702-3712.
[1] |
Hu Y.-F.; Lin G.-Q. Modern Organic Reactions: Reduction, Chemical Industry Press, Beijing, 2013 (in Chinese).
|
(胡跃飞, 林国强, 现代有机反应: 还原反应, 化学工业出版社, 北京, 2013.)
|
|
[2] |
Irrgang T.; Kempe R. Chem. Rev. 2020, 120, 9583.
|
[3] |
(a) Chung J. Y. L.; Meng D.; Shevlin M.; Gudipati V.; Chen Q.; Liu Y.; Lam Y.-H.; Dumas A.; Scott J.; Tu Q.; Xu F. J. Org. Chem. 2020, 85, 994.
doi: 10.1021/acs.joc.9b02948 pmid: 31850754 |
(b) Ashby E. C.; Boone J. R. J. Am. Chem. Soc. 1976, 98, 5524.
pmid: 31850754 |
|
(c) Heinsohn G. E.; Ashby E. C. J. Org. Chem. 1973, 38, 4232.
pmid: 31850754 |
|
[4] |
(a) Aqad E.; Lakshmikantham M. V.; Cava M. P. Org. Lett. 2004, 6, 3039.
|
(b) Bueno-López A.; García-García A.; Illán-Gómez M. J.; Linares-Solano A.; Lecea C. S.-M. D. Ind. Eng. Chem. Res. 2007, 46, 3891.
|
|
[5] |
Dams R.; Malinowski M.; Westdorp I.; Geise H. J. Org. Chem. 1982, 47, 248.
|
[6] |
Pesti J.; Larson G. L. Org. Process Res. Dev. 2016, 20, 1164.
|
[7] |
Espinosa J. C.; Navalon S.; Alvaro M.; Dhakshinamoorthy A.; Garcia H. ACS Sustainable Chem. Eng. 2018, 6, 5607.
|
[8] |
Gerhard B.; Werner K.; Gerhard R.; Thomas H. Phosphorus Compounds, Inorganic, Wiley-VCH, Weinheim, 2000.
|
[9] |
Liang X.-S.; Xiao Y.; Wu L.-Q. CN 103708433, 2013.
|
[10] |
Zhang L.; Koreeda M. J. Am. Chem. Soc. 2004, 126, 13190.
|
[11] |
Dai X.-J.; Li C.-J. J. Am. Chem. Soc. 2016, 138, 5433.
|
[12] |
Robins M. J.; Wilson J. S.; Hansske F. J. Am. Chem. Soc. 1983, 105, 4059.
|
[13] |
Milne J. E.; Storz T.; Colyer J. T.; Thiel O. R.; Seran M. D.; Larsen R. D.; Murry J. A. J. Org. Chem. 2011, 76, 9519.
|
[14] |
West C. T.; Donnelly S. J.; Kooistra D. A.; Doyle M. P. J. Org. Chem. 1973, 38, 2675.
|
[15] |
Clemmensen E. Chem. Ber. 1913, 46, 1837.
|
[16] |
Bradlow H. L.; VanderWerf C. A. J. Am. Chem. Soc. 1947, 69, 1254.
|
[17] |
Huang M. J. Am. Chem. Soc. 1949, 71, 3301.
|
[18] |
Hutchins R. O.; Maryanoff B.; Milewski C. J. Am. Chem. Soc. 1971, 93, 1793.
|
[19] |
(a) Blackwell J.; Hickinbottom W. J. J. Chem. Soc. 1961, 1405.
|
(b) Gribble G.W.; Kelly W. J.; Emery S. E. Synthesis 1978, 763.
|
|
(c) Ketcha D. M.; Lieurance B. A.; Homan D. F. J.; Gribble G. W. J. Org. Chem. 1989, 54, 4350.
|
|
[20] |
(a) Kelly T. R.; Kim M. H. J. Am. Chem. Soc. 1994, 116, 7072.
|
(b) Srikrishna A.; Viswajanani R.; Sattigeri J. A.; Yelamaggad C. V. Tetrahedron Lett. 1995, 36, 2347.
|
|
[21] |
(a) Smonou I. Tetrahedron Lett. 1994, 35, 2071.
pmid: 12467433 |
(b) Fry J. L.; Orfanopoulos M.; Adlington M. G.; Dittman W. P.; Silverman S. B. J. Org. Chem. 1978, 43, 374.
pmid: 12467433 |
|
(c) Chandrasekhar S.; Reddy C. R.; Babu B. N. J. Org. Chem. 2002, 67, 9080.
pmid: 12467433 |
|
[22] |
(a) Lee W. Y.; Park C. H.; Kim H. J.; Kim S. J. Org. Chem. 1994, 59, 878.
|
(b) Lee W. Y.; Park C. H.; Kim Y. D. J. Org. Chem. 1992, 57, 4074.
|
|
[23] |
(a) Prakash G. K. S.; Do C.; Mathew T.; Olah G. A. Catal. Lett. 2011, 141, 507.
|
(b) Sakai N.; Nagasawa K.; Ikeda R.; Nakaike Y.; Konakahara T. Tetrahedron Lett. 2011, 52, 3133.
|
|
(c) Jumbam N. D.; Makaluza S.; Masamba W. Bull. Chem. Soc. Ethiop. 2018, 32, 179.
|
|
[24] |
Deng J.; Xiao J.; Wang X.; Luo H.; Jia Z.; Wang J. Tetrahedron 2022, 113, 132755.
|
[25] |
Savela R.; Wärnå J.; Murzin D. Y.; Leino R. Catal. Sci. Technol. 2015, 5, 2406.
|
[26] |
Li Z.; Sheng C.; Yang C.; Qiu H. Org. Prep. Proced. Int. 2007, 39, 608.
|
[27] |
Keinan E.; Perez D.; Sahai M.; Shvily R. J. Org. Chem. 1990, 55, 2927.
|
[28] |
Bhor M. D.; Panda A. G.; Nandurkar N. S.; Bhanage B. M. Tetrahedron Lett. 2008, 49, 6475.
|
[29] |
Zeng C.; Shen G.; Yang F.; Chen J.; Zhang X.; Gu C.; Zhou Y.; Fan B. Org. Lett. 2018, 20, 6859.
|
[30] |
Lv F.; Xiao J.; Xiang J.; Guo F.; Tang Z.-L.; Han L.-B. J. Org. Chem. 2021, 86, 3081.
|
[31] |
He T.; Zhang C.; Zhang L.; Du A. Nano Res. 2019, 12, 1817.
|
[32] |
Liu W. J.; Qian T. T.; Jiang H. Chem. Eng. J. 2014, 236, 448.
|
[33] |
(a) Kandagatla B.; Raju V. V. N. K. V. P.; Reddy G. M.; Rao S. C.; Iqbal J.; Bandichhor R.; Oruganti S. Tetrahedron Lett. 2012, 53, 7125.
|
(b) Larock R. C. Comprehensive Organic Transformations, John Wiley & Sons, New York, 1999.
|
|
[34] |
Krapcho J.; Turk C. F.; Piala J. J. J. Med. Chem. 1968, 11, 361.
pmid: 4174063 |
[35] |
(a) Formenti D.; Ferretti F.; Scharnagl F. K.; Beller M. Chem. Rev. 2019, 119, 2611.
doi: 10.1021/acs.chemrev.8b00547 pmid: 30516963 |
(b) Wang J.; Zhang Y. J.; Diao J. Y.; Zhang J.; Liu H.; Su D. Chin. J. Catal. 2018, 39, 79.
doi: 10.1016/S1872-2067(17)62925-5 pmid: 30516963 |
|
[36] |
Wu G. G.; Chen F. X.; LaFrance D.; Liu Z.; Greene S. G.; Wong Y.-S.; Xie J. Org. Lett. 2011, 13, 5220.
|
[37] |
(a) Quin L. D. A Guide to Organophosphorus Chemistry, Wiley, New York, 2000.
|
(b) Kamer P. C. J.; van Leeuwen P. W. N. M. Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis, Wiley, Chichester, U.K., 2012.
|
|
[38] |
Broger E. A.; Switzerland M. US 4249023, 1981.
|
[39] |
Kuroboshi M.; Yano T.; Kamenoue S.; Kawakubo H.; Tanaka H. Tetrahedron 2011, 67, 5825.
|
[40] |
Natoli J. G.; Parlin N. J. US 3405180, 1968.
|
[41] |
Vilas M. C.; Parlin N. J. US 3855310, 1974.
|
[42] |
Xiao J.; Wang J.; Zhang H.; Zhang J.; Han L.-B. J. Org. Chem. 2023, 88, 3909.
|
[43] |
McGarrigle E. M.; Myers E. L.; Illa O.; Shaw M. A.; Riches S. L.; Aggarwal V. K. Chem. Rev. 2007, 107, 5841.
doi: 10.1021/cr068402y pmid: 18072810 |
[44] |
(a) Jang Y.; Kim K. T.; Jeon H. B. J. Org. Chem. 2013, 78, 6328;
|
(b) Sanz R.; Escribano J.; Aguado R.; Pedrosa M. R.; Arnáiz F. J. Synthesis 2004, 35, 1629.
|
|
[45] |
Ding F.; Jiang Y.; Gan S.; Bao R. L. Y.; Lin K.; Shi L. Eur. J. Org. Chem. 2017, 2017, 3427.
|
[46] |
Enthaler S.; Krackl S.; Irran E.; Inoue S. Catal. Lett. 2012, 142, 1003.
|
[47] |
García N.; Fernandez-Rodriguez M. A.; Garcia-Garcia P.; Pedrosa M. R.; Arnaiz F. J.; Sanz R. RSC Adv. 2016, 6, 27083.
|
[48] |
(a) Alonso F.; Beletskaya I. P.; Yus M. Chem. Rev. 2002, 102, 4009.
|
(b) Chelucci G.; Baldino S.; Pinna G. A.; Pinna G. Curr. Org. Chem. 2012, 16, 2921.
|
|
[49] |
(a) Inoue K.; Sawada A.; Shibata I.; Baba A. Tetrahedron Lett. 2001, 42, 4661.
|
(b) Rahm A.; Amardeil R.; Degueil-Castaing M. J. Organomet. Chem. 1989, 371, 4.
|
|
[50] |
Yang J.; Brookhart M. Adv. Synth. Catal. 2009, 351, 175.
|
[51] |
Krishnamurthy S.; Brown H. C. J. Org. Chem. 1980, 45, 849.
|
[52] |
Krishnamurthy S.; Brown H. C. J. Org. Chem. 1982, 47, 276.
|
[53] |
Xiao J.; Ma Y.; Wu X.; Gao J.; Tang Z.; Han L.-B. RSC Adv. 2019, 9, 22343.
|
[54] |
(a) Eren G.; Ünlü S.; Nunez M.-T.; Labeaga L.; Ledo F.; Entrena A.; Banoglu E.; Costantino G.; Sahin M. F. Bioorg. Med. Chem. 2010, 18, 6367.
pmid: 9544213 |
(b) Xue N.; Zhou Y.; Wang G.; Miao W.; Qu J. J. Heterocycl. Chem. 2010, 47, 15.
pmid: 9544213 |
|
(c) Ucar H.; Derpoorten K.V.; Cacciaguerra S.; Spampinato S.; Stables J. P. J. Med. Chem. 1998, 41, 1138.
pmid: 9544213 |
|
[55] |
Noujima A.; Mitsudome T.; Mizugaki T.; Jitsukawa K.; Kaneda K. Green Chem. 2013, 15, 608.
|
[56] |
Ram R. N.; Soni V. K. J. Org. Chem. 2013, 78, 11935.
doi: 10.1021/jo401985h pmid: 24168289 |
[57] |
Zhang W.; Li Q.; Shi T. CN 107188864, 2019.
|
[58] |
Wang X.; Xiang J.; Wang J.; Yu Z.; Tang Z.-L.; Xiao J. Tetrahedron 2022, 127, 133094.
|
[59] |
Li P.; Wischert R.; Métivier P. Angew. Chem., Int. Ed. 2017, 56, 15989.
|
[60] |
Montchamp J.-L. Acc. Chem. Res. 2014, 47, 77.
|
[61] |
Koshti V.; Gaikwad S.; Chikkali S. H. Coord. Chem. Rev. 2014, 265, 52.
|
[62] |
Cheng R.; Li C.-J. Angew. Chem., Int. Ed. 2023, 62, e202301730.
|
[63] |
Zhu J.; Ye Y.; Huang Y. Organometallics 2022, 41, 2342.
|
[64] |
Wang Jie; Xiao J.; Tang Z.-L.; Lan D.-H.; Han L.-B. J. Org. Chem. 2024, 89, 5109.
|
[65] |
(a) Atsumi S.; Hanai T.; Liao J. C. Nature 2008, 451, 86.
|
(b) Ma S. K.; Gruber J.; Davis C.; Newman L.; Gray D.; Wang A.; Grate J.; Huisman G. W.; Sheldon R. A. Green Chem. 2010, 12, 81.
|
|
[66] |
Tensi L.; Macchioni A. ACS Catal. 2020, 10, 7945.
|
[1] | 杨媛, 牛丽君, 闫泽宇, 叶姗姗, 张变香. 含苯并杂环芳基硫醚的合成及其抗肿瘤活性研究[J]. 有机化学, 2024, 44(9): 2854-2861. |
[2] | 李龙龙, 何欣悦, 周龙生, 曲亨通, 冯承涛, 徐坤. 硫氰酸铵促进的[3+3]环化反应合成5-芳基吡唑并[1,5-a]嘧啶[J]. 有机化学, 2024, 44(9): 2832-2840. |
[3] | 刘典范, 王健智, 王梦晴, 陈晓蓓, 胡延维, 张士磊. 邻二碘芳烃和氢化钠产生芳炔用于硫醇的邻碘芳基化反应[J]. 有机化学, 2024, 44(7): 2363-2370. |
[4] | 韩璐瑶, 胡硕真, 郭庆春, 郭红永, 高照群, 许颖, 张新胜. 二苯甲酮腙电氧化制备二苯重氮甲烷的研究[J]. 有机化学, 2024, 44(3): 951-965. |
[5] | 孙雪, 颜廷涛, 闫克鲁, 杨建静, 文江伟. 电化学促使α-重氮酯的磷酸化构筑亚膦酸腙[J]. 有机化学, 2024, 44(3): 1013-1020. |
[6] | 曹同阳, 李玮, 王力竞. N-碘代丁二酰亚胺(NIS)参与的碘化反应最新研究进展[J]. 有机化学, 2024, 44(2): 508-524. |
[7] | 陈雯雯, 张琴, 张松月, 黄芳芳, 张馨尹, 贾建峰. 无光催化剂条件下可见光诱导炔基碘和亚磺酸钠偶联反应[J]. 有机化学, 2024, 44(2): 584-592. |
[8] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[9] | 范飞飞, 陈龙徽, 王光伟. 四羟基二硼和硫酸铜共同促进的苯酞类化合物的简便合成[J]. 有机化学, 2024, 44(11): 3467-3475. |
[10] | 陈乡萍, 孟晨湘, 李梦娜, 楚尚敏, 朱欣欣, 许凯, 刘澜涛, 王涛, 张凤华, 李飞. 水相中抗坏血酸钠促进铁催化合成含硫芳香伯胺化合物[J]. 有机化学, 2023, 43(8): 2800-2807. |
[11] | 张周, 郭钰, 羊静, 吴丹, 王佳昕, 洪欣玥, 蔡佩君, 荣良策. 电化学促进咪唑并[1,2-a]吡啶与二氯(溴)乙烷及碘仿的卤化反应[J]. 有机化学, 2023, 43(6): 2104-2109. |
[12] | 纪健, 刘进华, 管丛, 陈绪文, 赵芸, 刘顺英. 原位生成的磺酸催化N-磺酰基-1,2,3-三氮唑与醇偶联高区域选择性合成N2-取代1,2,3-三氮唑[J]. 有机化学, 2023, 43(3): 1168-1176. |
[13] | 刘宁, 爨晓丹, 李慧, 段希焱. 烯胺酮α-官能团化反应的研究进展[J]. 有机化学, 2023, 43(2): 602-621. |
[14] | Yasir Mumtaz, 刘杰, 黄鑫. 铜促进的苯胺类化合物与CF3SO2Na的三氟甲硫基化反应[J]. 有机化学, 2023, 43(2): 679-685. |
[15] | 马彪, 章淼淼, 李占宇, 彭进松, 陈春霞. 无过渡金属催化的Suzuki-Type交叉偶联反应研究进展[J]. 有机化学, 2023, 43(2): 455-470. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||