钴催化C(sp2)—H活化构建苯并含氮杂环骨架的研究进展
收稿日期: 2024-04-24
修回日期: 2024-05-27
网络出版日期: 2024-07-02
基金资助
国家重点研发计划(2019YFE0109200); 国家自然科学基金(22361050); 兴滇英才支持计划资助项目
Progress on Cobalt-Catalyzed C(sp2)—H Activation for the Construction of Nitrogen-Containing Benzo Heterocycles
Received date: 2024-04-24
Revised date: 2024-05-27
Online published: 2024-07-02
Supported by
National Key R&D Program of China(2019YFE0109200); National Natural Science Foundation of China(22361050); Program for Xingdian Talents
苯并含氮杂环化合物是天然产物、药物活性分子中的重要骨架. 近年来, 过渡金属催化作为C(sp2)—H活化反应的有力手段, 在苯并含氮杂环化合物的合成中有着重要贡献. 在绿色环保经济的理念下, 地球含量丰富的钴作为廉价金属催化剂逐渐进入研究人员的视野. 归纳总结了2015年至今国内外钴催化C(sp2)—H活化构建苯并含氮杂环结构的研究进展, 使用的钴催化剂按种类可分为环戊二烯(Cp)配位的CpCo(III)催化剂以及无Cp配位的Co(II)催化剂, 按反应类型可分为分子间反应和分子内反应, 从这几个方面进行系统综述, 并对该领域目前的局限和未来发展进行了总结与展望.
关键词: 钴催化剂; C(sp2)—H活化; 环化反应; 苯并含氮杂环; 过渡金属催化
田勋 , 邓国刚 , 羊晓东 . 钴催化C(sp2)—H活化构建苯并含氮杂环骨架的研究进展[J]. 有机化学, 2025 , 45(2) : 655 -667 . DOI: 10.6023/cjoc202404038
Nitrogen-containing benzo heterocycles serve as crucial scaffolds in natural products and biologically active molecules. In recent years, transition metal catalysis has emerged as a powerful strategy in C(sp2)—H activation, making significant contributions to the synthesis of nitrogen-containing benzo heterocycles. Embracing the concept of green and sustainable economy, the abundantly available cobalt metal is gaining attention as an economical catalyst among researchers. In this review, the research progress on cobalt-catalyzed C(sp2)—H activation for the construction of nitrogen-containing benzo heterocycles from 2015 to present is summarized. The cobalt catalysts used can be classified into cyclopentadienyl (Cp)-coordinated CpCo(III) catalysts as well as Cp-free Co(II) catalysts by species, and reaction types can be categorized into intermolecular and intramolecular reactions, which are systematically reviewed according to these classifications. Furthermore, the current limitations and future prospects of this field are summarized and discussed.
| [1] | Bergmann, R.; Gericke, R. J. Med. Chem. 1990, 33, 492. |
| [2] | Duan, J. J.-W.; Chen, L.; Wasserman, Z. R.; Lu, Z.; Liu, R.-Q.; Covington, M. B.; Qian, M.; Hardman, K. D.; Magolda, R. L.; Newton, R. C.; Christ, D. D.; Wexler, R. R.; Decicco, C. P. J. Med. Chem. 2002, 45, 4954. |
| [3] | Yang, L.; Shi, L.; Xing, Q.; Huang, K.-W.; Xia, C.; Li, F. ACS Catal. 2018, 8, 10340. |
| [4] | Liu, Z.; Zi, Y.; Zhang, L.; Fang, Y.; Shen, Y.; Li, Y.; Yang, X.; Zhang, H. Chin. J. Org. Chem. 2020, 40, 669 (in Chinese). |
| [4] | (刘正芬, 字玉金, 张琳琳, 方永晟, 沈艳珍, 李艳, 羊晓东, 张洪彬, 有机化学, 2020, 40, 669.) |
| [5] | Nicolatou-Galitis, O.; Bossi, P.; Orlandi, E.; René-Jean, B. Support. Care Cancer 2021, 29, 5701. |
| [6] | Obeid, M. A.; Ogah, C. A.; Ogah, C. O.; Ajala, O. S.; Aldea, M. R.; Gray, A. I.; Igoli, J. I.; Ferro, V. A. J. Drug Delivery Sci. Technol. 2023, 87, 104766. |
| [7] | Murphy, J. A.; Tripoli, R. G.; Khan, T. A.; Mali, U. W. Org. Lett. 2005, 7, 3287. |
| [8] | Tsai, Y.-C.; Lee, C.-L.; Yen, H.-R.; Chang, Y.-S.; Lin, Y.-P.; Huang, S.-H.; Lin, C.-W. Biomolecules 2020, 10, 366. |
| [9] | Inger, J. A.; Mihan, E. R.; Kolli, J. U.; Lindsley, C. W.; Bender, A. M. ACS Chem. Neurosci. 2023, 14, 340. |
| [10] | Ramesh, C.; Raju, B. R.; Kavala, V.; Kuo, C.-W.; Yao, C.-F. Tetrahedron 2011, 67, 1187. |
| [11] | Li, J.-S.; Chen, G.-Q.; Yang, Q.; Li, Z.-W.; Liu, C.-Z.; Huang, P.-M. RSC Adv. 2017, 7, 45227. |
| [12] | Zhang, L.; Sonaglia, L.; Stacey, J.; Lautens, M. Org. Lett. 2013, 15, 2128. |
| [13] | Chatani, N. Asian J. Org. Chem 2018, 7, 1135. |
| [14] | Niu, J.; Yang, D. Chin. J. Org. Chem. 2023, 43, 1887 (in Chinese). |
| [14] | (杨丹丹, 牛俊龙, 有机化学, 2023, 43, 1887.) |
| [15] | Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560. |
| [16] | Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058. |
| [17] | Zhu, C.; Falck, J. R. Org. Lett. 2011, 13, 1214. |
| [18] | Zhang, Q.; Shi, B.-F. Acc. Chem. Res. 2021, 54, 2750. |
| [19] | Shi, B.; Han, Y. Acta Chim. Sinica 2023, 81, 1522 (in Chinese). |
| [19] | (韩叶强, 史炳锋, 化学学报, 2023, 81, 1522.) |
| [20] | Xu, H.-B.; Yang, J.-H.; Chai, X.-Y.; Zhu, Y.-Y.; Dong, L. Org. Lett. 2020, 22, 2060. |
| [21] | Jung, H.-Y.; Chang, S.; Hong, S. Org. Lett. 2019, 21, 7099. |
| [22] | Keum, H.; Jung, H.; Jeong, J.; Kim, D.; Chang, S. Angew. Chem. Int. Ed. 2021, 60, 25235. |
| [23] | Li, B.; Park, Y.; Chang, S. J. Am. Chem. Soc. 2014, 136, 1125. |
| [24] | Manna, M. K.; Bairy, G.; Jana, R. J. Org. Chem. 2018, 83, 8390. |
| [25] | Tan, X.; Hou, X.; Rogge, T.; Ackermann, L. Angew. Chem. Int. Ed. 2021, 60, 4619. |
| [26] | Stuart, D. R.; Bertrand-Laperle, M. G.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474. |
| [27] | Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2011, 133, 6449. |
| [28] | Yu, D.-G.; Suri, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 8802. |
| [29] | Tosi, E.; de Figueiredo, R. M.; Campagne, J.-M. Catalysts 2021, 11, 471. |
| [30] | Tomar, V.; Kumar, P.; Nemiwal, M.; Joshi, R. K. Inorg. Chem. Commun. 2023, 158, 111488. |
| [31] | Garai, B.; Das, A.; Kumar, D. V.; Sundararaju, B. Chem. Commun. 2024, 60, 3354. |
| [32] | Sun, B.; Yoshino, T.; Kanai, M.; Matsunaga, S. Angew. Chem. Int. Ed. 2015, 54, 12968. |
| [33] | Wang, H.; Koeller, J.; Liu, W.; Ackermann, L. Chem.-Eur. J. 2015, 21, 15525. |
| [34] | Sen, M.; Kalsi, D.; Sundararaju, B. Chem.-Eur. J. 2015, 21, 15529. |
| [35] | Kong, L.; Yu, S.; Zhou, X.; Li, X. Org. Lett. 2016, 18, 588. |
| [36] | Zhang, Z.-Z.; Liu, B.; Xu, J.-W.; Yan, S.-Y.; Shi, B.-F. Org. Lett. 2016, 18, 1776. |
| [37] | Wang, H.; Moselage, M.; González, M. J.; Ackermann, L. ACS Catal. 2016, 6, 2705. |
| [38] | Liang, Y.; Jiao, N. Angew. Chem., Int. Ed. 2016, 55, 4035. |
| [39] | Lerchen, A.; Vásquez‐Céspedes, S.; Glorius, F. Angew. Chem., Int. Ed. 2016, 55, 3208. |
| [40] | Wang, F.; Wang, H.; Wang, Q.; Yu, S.; Li, X. Org. Lett. 2016, 18, 1306. |
| [41] | Yu, X.; Chen, K.; Guo, S.; Shi, P.; Song, C.; Zhu, J. Org. Lett. 2017, 19, 5348. |
| [42] | Huang, J.; Huang, Y.; Wang, T.; Huang, Q.; Wang, Z.; Chen, Z. Org. Lett. 2017, 19, 1128. |
| [43] | Wang, H.; Lorion, M. M.; Ackermann, L. ACS Catal. 2017, 7, 3430 |
| [44] | Ozols, K.; Jang, Y. S.; Cramer, N. J. Am. Chem. Soc. 2019, 141, 5675. |
| [45] | Aher, Y. N.; Pawar, A. B. Chem. Commun. 2021, 57, 7164. |
| [46] | Hirata, Y.; Sekine, D.; Kato, Y.; Lin, L.; Kojima, M.; Yoshino, T.; Matsunaga, S. Angew. Chem., Int. Ed. 2022, 61, e202205341. |
| [47] | Tian, X.; Pan, A.; Du, Y.; Zhang, L.; Qin, C.; Duan, S.; Yang, L.; Yang, X. Adv. Synth. Catal. 2022, 364, 4421. |
| [48] | Wu, X.; Wu, W.; Fan, S.; Han, X.; Wang, Z.; Xu, H.; Wang, B.; Zhu, J. Org. Biomol. Chem. 2023, 21, 3335. |
| [49] | Jothi Murugan, S.; Jeganmohan, M. J. Org. Chem. 2023, 88, 1578. |
| [50] | Ghosh, A.; Rana, T.; Bhaduri, N.; Pawar, A. B. Org. Lett. 2023, 25, 7878. |
| [51] | Lee, J.; Lee, J.; Jung, H.; Kim, D.; Park, J.; Chang, S. J. Am. Chem. Soc. 2020, 142, 12324. |
| [52] | Tian, X.; Li, X.; Duan, S.; Du, Y.; Liu, T.; Fang, Y.; Chen, W.; Zhang, H.; Li, M.; Yang, X. Adv. Synth. Catal. 2020, 363, 1050. |
| [53] | Lee, J.; Kang, B.; Kim, D.; Lee, J.; Chang, S. J. Am. Chem. Soc. 2021, 143, 18406. |
| [54] | Hao, X.-Q.; Du, C.; Zhu, X.; Li, P.-X.; Zhang, J.-H.; Niu, J.-L.; Song, M.-P. Org. Lett. 2016, 18, 3610. |
| [55] | Tang, S.; Wang, D.; Liu, Y.; Zeng, L.; Lei, A. Nat. Commun. 2018, 9, 798. |
| [56] | Meyer, T. H.; Oliveira, J. C. A.; Sau, S. C.; Ang, N. W. J.; Ackermann, L. ACS Catal. 2018, 8, 9140. |
| [57] | Sau, S. C.; Mei, R.; Struwe, J.; Ackermann, L. ChemSusChem 2019, 12, 3023. |
| [58] | Liu, M.; Niu, J.-L.; Yang, D.; Song, M.-P. J. Org. Chem. 2020, 85, 4067. |
| [59] | Meyer, T. H.; Chesnokov, G. A.; Ackermann, L. ChemSusChem 2020, 13, 668. |
| [60] | Yuan, W. K.; Shi, B. F. Angew. Chem., Int. Ed. 2021, 60, 23187. |
| [61] | Patel, R. N.; Patel, D. M.; Rathod, N. B.; Thakur, D. G.; Patel, S. D.; Tothadi, S.; Ghosh, S. C. Eur. J. Org. Chem. 2023, 26, e202300669. |
| [62] | Li, B.; Xie, M.; Li, J.; Shen, N.; Zhang, X.; Fan, X. Chin. J. Chem. 2023, 42, 363. |
| [63] | Begam, H. M.; Pradhan, K.; Varalaxmi, K.; Jana, R. Chem. Commun. 2023, 59, 5595. |
| [64] | Yao, Q. J.; Chen, J. H.; Song, H.; Huang, F. R.; Shi, B. F. Angew. Chem., Int. Ed. 2022, 61, e202202892. |
| [65] | Liu, T.; Zhang, W.; Xu, C.; Xu, Z.; Song, D.; Qian, W.; Lu, G.; Zhang, C.-J.; Zhong, W.; Ling, F. Green Chem. 2023, 25, 3606. |
| [66] | Yao, Q. J.; Huang, F. R.; Chen, J. H.; Zhong, M. Y.; Shi, B. F. Angew. Chem., Int. Ed. 2023, 62, e202218533. |
| [67] | Lin, Y.; von Munchow, T.; Ackermann, L. ACS Catal. 2023, 13, 9713. |
| [68] | Münchow, T. V.; Dana, S.; Xu, Y.; Yuan, B.; Ackermann, L. Science 2023, 379, 1036. |
| [69] | Wang, X.; Si, X. J.; Sun, Y.; Wei, Z.; Xu, M.; Yang, D.; Shi, L.; Song, M. P.; Niu, J. L. Org. Lett. 2023, 25, 6240. |
| [70] | Yang, D.; Zhang, X.; Wang, X.; Si, X.-J.; Wang, J.; Wei, D.; Song, M.-P.; Niu, J.-L. ACS Catal. 2023, 13, 4250. |
| [71] | Li, T.; Shi, L.; Zhao, X.; Wang, J.; Si, X. J.; Yang, D.; Song, M. P.; Niu, J. L. Org. Lett. 2023, 25, 5191. |
| [72] | Si, X. J.; Zhao, X.; Wang, J.; Wang, X.; Zhang, Y.; Yang, D.; Song, M. P.; Niu, J. L. Chem. Sci. 2023, 14, 7291. |
| [73] | Wu, Y.-J.; Chen, J.-H.; Teng, M.-Y.; Li, X.; Jiang, T.-Y.; Huang, F.-R.; Yao, Q.-J.; Shi, B.-F. J. Am. Chem. Soc. 2023, 145, 24499. |
| [74] | Zhang, Y.; Liu, S.-L.; Li, T.; Xu, M.; Wang, Q.; Yang, D.; Song, M.-P.; Niu, J.-L. ACS Catal. 2024, 14, 1. |
| [75] | Wang, B. J.; Xu, G. X.; Huang, Z. W.; Wu, X.; Hong, X.; Yao, Q. J.; Shi, B. F. Angew. Chem., Int. Ed. 2022, 61, e202208912. |
/
| 〈 |
|
〉 |