综述与进展

甲基乙二醛荧光探针的研究进展

  • 王雅萍 ,
  • 范艳玲 ,
  • 任咏琪 ,
  • 徐玉林
展开
  • 湖北理工学院化学与化工学院 湖北黄石 435003

收稿日期: 2024-03-03

  修回日期: 2024-05-15

  网络出版日期: 2024-07-17

基金资助

湖北省教育厅科学技术研究计划(Q20214504); 湖北理工学院人才引进基金(20xjz10R)

Recent Progress on Fluorescent Probes for the Detection of Methylglyoxal

  • Yaping Wang ,
  • Yanling Fan ,
  • Yongqi Ren ,
  • Yulin Xu
Expand
  • School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi, Hubei 435003
*Corresponding author. E-mail:

Received date: 2024-03-03

  Revised date: 2024-05-15

  Online published: 2024-07-17

Supported by

Science and Technology Research Program of Department of Education of Hubei Province(Q20214504); Talent Introduction Fund of Hubei Polytechnic University(20xjz10R)

摘要

甲基乙二醛(MGO)作为一种高活性的羰基化合物, 在生理和病理过程中起着重要作用. MGO作为糖基化剂可与蛋白质、DNA以及脂质反应形成晚期糖基化终产物(AGEs), 导致蛋白质功能障碍和细胞死亡, 从而产生一系列疾病, 如心血管疾病、炎症、糖尿病等. 因此, 开发高效、快速、原位检测胞内MGO的方法尤为重要. 荧光探针因其具有选择性好、灵敏度高、无侵入性等优势, 被广泛地运用于生物系统中MGO的检测. 总结了近年来MGO荧光探针的研究进展, 对MGO荧光探针的设计思想、识别机理及其生物应用进行了重点阐述, 并对MGO荧光探针的设计和应用前景提出了展望.

本文引用格式

王雅萍 , 范艳玲 , 任咏琪 , 徐玉林 . 甲基乙二醛荧光探针的研究进展[J]. 有机化学, 2024 , 44(11) : 3299 -3308 . DOI: 10.6023/cjoc202403003

Abstract

Methylglyoxal (MGO), as a highly active carbonyl compound, plays an important role in physiological and patho- logical processes. As a glycosylation agent, MGO can react with proteins, DNAs and lipids to form advanced glycation end products (AGEs), which leads to protein dysfunctions and cell death, and then causes a series of diseases, such as cardiovascular disease, inflammation, diabetes and so on. Therefore, it is important to develop an efficient, rapid and in situ method for detecting intracellular MGO. Fluorescent probes have been widely used in the detection of MGO in biological systems due to their advantages of good selectivity, high sensitivity and non-invasiveness. In this review, the research progress on fluorescence probes of MGO is summarized and the design concept, recognition mechanism and biological application are emphasized in recent years. Finally, the prospect to design and applications of fluorescence probes for MGO is also discussed.

参考文献

[1]
Kalapos M. P. Toxicol. Lett. 1999, 110, 145.
[2]
Falone S.; D'Alessandro A.; Mirabilio A.; Petruccelli G.; Cacchio M.; Ilio C. D.; Loreto S. D.; Amicarelli F. PLoS One 2012, 7, e31401.
[3]
Jia X.-M.; Olson D. J. H.; Ross A. R. S.; Wu L.-Y. FASEB J. 2006, 20, 1555.
[4]
Gao Y.; Wang Y. Biochemistry 2006, 45, 15654.
[5]
Cantero A.; Portero-Otin M.; Ayala V.; Auge N.; Sanson M.; Elbaz M.; Thiers J.; Pamplona R.; Salvayre R.; Negre-Salvayre A. FASEB J. 2007, 21, 3096.
[6]
Rabbani N.; Thornalley; P. J. Amino Acids 2012, 42, 1133.
[7]
Biswas A.; Wang B.; Miyagi M.; Nagaraj R.H. Biochem. J. 2008, 409, 771.
[8]
Matafome P.; Sena C.; Seica R. Endocrine 2013, 43, 472.
[9]
(a) Matafome P.; Santos-Silva D.; Crisóstomo J.; Rodrigues T.; Rodrigues L.; Sena C.; Pereira P.; Seica R.; Arch. Physiol. Biochem. 2012, 118, 58.
[9]
(b) Dhar A.; Dhar I.; Desai K. M.; Wu L.-Y. Br. J. Pharmacol. 2010, 161, 843.
[9]
(c) Singh R.; Barden A.; Mori T.; Beilin L. Diabetologia 2001, 44, 129.
[9]
(d) Du J.; Suzuki H.; Nagase F.; Akhand A. A.; Nakashima I. Free Radic. Biol. Med. 2001, 31, 469.
[10]
(a) Chen Y.; Hu A.; Yang L.-Y.; Li Z.-Y.; Yan K. Chin. J. Org. Chem. 2017, 37, 1939 (in Chinese).
[10]
(陈燚, 胡奥晗, 杨凌毅, 李早英, 严琨, 有机化学, 2017, 37, 1939.)
[10]
(b) Rabbani N.; Thornalley P. J. Biochem. Soc. Trans. 2014, 42, 425.
[10]
(c) Kilhovd B. K.; Juutilainen A.; Lehto S.; Rnnemaa T.; Torjesen P. A.; Hanssen K. F.; Laakso M. Atherosclerosis 2009, 205, 590.
[11]
Brouwers O.; Niessen P. M.; Haenen G.; Miyata T.; Brownlee M.; Stehouwer C. D.; Mey J. G. D.; Schalkwijk C.G. Diabetologia 2010, 53, 989.
[12]
(a) Mclellan A. C.; Phillips S. A.; Thornalley P. J. Anal. Biochem. 1992, 206, 17.
[12]
(b) Chaplen F. W. R.; Fahl W. E.; Cameron D. C. Anal. Biochem. 1996, 238, 171.
[12]
(c) Nemet I.; Varga-Defterdarovi L.; Turk Z. Clin. Biochem. 2004, 37, 875.
[13]
Wild R.; Ooi L.; Velandai S. G. M. Anal. Bioanal. Chem. 2012, 403, 2577.
[14]
(a) Li Y.-T.; Zhao X.-J.; Jiang Y.-R.; Yang B.-Q. New J. Chem. 2018, 42, 19478.
[14]
(b) Zhou L.; Chen Y.; Shao B.; Cheng J.; Li X. Front. Chem. Sci. Eng. 2022, 16, 34.
[14]
(c) Yang X.; Lu X.; Wang J.; Zhang Z.; Du X.; Zhang J.; Wang J. J. Agric. Food Chem. 2022, 70, 3047.
[15]
(a) Li J.-J.; Ban L.-F.; Tang L.-J. Chin. J. Org. Chem. 2021, 41, 241 (in Chinese).
[15]
(李娇娇, 班立夫, 汤立军, 有机化学, 2021, 41, 241.)
[15]
(b) Hou J.; Qian M.; Zhao H.; Li Y.; Liao Y.; Han G.; Xu Z.; Wang F.; Song Y.; Liu Y. Anal. Chim. Acta 2018, 1024, 169.
[15]
(c) Wei Y.; Wang X.; Shi W.; Chen R.; Zheng L.; Wang Z.; Chen K.; Gao L. Eur. J. Med. Chem. 2021, 226, 113828.
[16]
(a) Liu X.; Li N.; Li M.; Chen H.; Zheng K. Coord. Chem. Rev. 2020, 404, 213109.1.
[16]
(b) Wei C.; Zhang P.-Z.; Li X.-L. Chin. J. Org. Chem. 2019, 39, 3375 (in Chinese).
[16]
(魏超, 张平竹, 李小六, 有机化学, 2019, 39, 3375.)
[16]
(c) Chen E.-Q.; Tang Y.-H.; Wang L.; Ren J.-B.; Lin W.-Y. Chin. J. Org. Chem. 2021, 41, 1200 (in Chinese).
[16]
(陈恩庆, 唐永和, 王蕾, 任江波, 林伟英, 有机化学, 2021, 41, 1200.)
[17]
Wang T.; Jr E. F. D.; Fitzgerald K. J.; Spiegel D. A. J. Am. Chem. Soc. 2013, 135, 12429.
[18]
Tang T.; Zhou Y.-M.; Chen Y.-Q.; Li M.-J.; Feng Y.; Wang C.-C.; Wang S.-R.; Zhou X. Anal. Methods, 2015, 7, 2386.
[19]
Zhang W.-Z.; Zhang F.-Y.; Wang Y.-L.; Song B.; Zhang R.; Yuan J. L. Inorg. Chem. 2017, 56, 1309.
[20]
Liu C.; Jiao X.-J.; He S.; Zhao L.-C.; Zeng X.-S. Dyes Pigm. 2017, 138, 23.
[21]
Yang M.-W.; Fan J.-L.; Zhang J.-W.; Du J.-J.; Peng X.-J. Chem. Sci. 2018, 9, 6758.
[22]
Gao S.-Y.; Tang Y.-H.; Lin W.-Y. J. Fluoresc. 2019, 29, 155.
[23]
Ding C.-Y.; Wang F.-Y.; Dang Y.-J.; Xu Zh.-A.; Li L.-L.; Lai Y.; Yu H.-J.; Luo Y.; Huang R.-M.; Zhang A.; Zhang W. Anal. Chem. 2019, 91, 15577.
[24]
Dang Y.-J.; Wang F.-Y.; Li L.-L.; Lai Y.; Xu Z.-A.; Xiong Z.; Zhang A.; Tian Y.; Ding C.-Y.; Zhang W. Chem. Commun. 2020, 56, 707.
[25]
Liu J.; Li M.; Dang Y.-J.; Lou H.-M.; Xu Z.-A.; Zhang W. Biosens. Bioelectron. 2022 204, 114068.
[26]
(a) Dang Y.-J.; Lai Y.; Chen F.-P.; Sun O.; Ding C.-Y.; Zhang W.; Xu Z.-A. Anal. Chem. 2022, 94, 1076.
[26]
(b) Dang Y.-J. Ph.D. Dissertation, East China Normal University, Shanghai, 2021 (in Chinese).
[26]
(党?菁, 博士论文, 华东师范大学, 上海, 2021.)
[27]
Wang H.-L.; Xu Y.-L.; Rao L.; Yang C.-T.; Yuan H.; Gao T.-J.; Chen X.; Sun H.-Y.; Xian M.; Liu C.-R.; Liu C.-L. Anal. Chem. 2019, 91, 5646.
[28]
Xu H.; Liu Q.-Q.; Song X.-D.; Wang C.; Wang X.-R.; Ma S.-N.; Wang X.-L.; Feng Y.; Meng X.-M.; Liu X.-G.; Wang W.; Lou K.-Y. Anal. Chem. 2020, 92, 13829.
[29]
Wang W.-L.; Chen J.-W.; Ma H.-J.; Xing W.-J.; Lv N.; Zhang B.-N.; Xu H.; Wang W.; Lou K.-Y. Chem. Commun. 2021, 57, 8166.
[30]
Chen J.-W.; Lin Y.-N.; Xing W.-J.; Zhang X.-C.; Xu H.; Wang W.; Lou K.-Y. RSC Adv. 2022, 12, 9473.
[31]
Wang Z.-M.; Bian Y.-Y.; Liu C.; He S.; Zhao L.-C.; Zeng X.-S. Chem. Commun. 2022, 58, 6453.
[32]
Xu H.; Liu X.-R.; Cai Z.-H.; Zheng J.-F.; Wang Y.-W.; Peng Y. Org. Biomol. Chem. 2022, 20, 4782.
[33]
Zhang Y.; Li W.; Chen X.-Q.; Xiong S.-Q.; Bian Y.-N.; Yuan L.; Gao X.-Y.; Su D.-D. Anal. Chem. 2023, 95, 2579.
[34]
Ma Y.; Shang J.-H.; Liu L.-H.; Li M.-H.; Xu X.-Y.; Cao H.; Xu L.; Sun W.; Song G.-S.; Zhang X.-B. J. Am. Chem. Soc. 2023, 145, 17881.
文章导航

/