综述与进展

固态荧光光开关分子研究进展

  • 胡甲松 ,
  • 李春娟 ,
  • 徐斌 ,
  • 田文晶
展开
  • 吉林大学超分子结构与材料国家重点实验室 长春 130012

收稿日期: 2024-03-31

  修回日期: 2024-06-30

  网络出版日期: 2024-07-18

基金资助

吉林省自然科学基金(20240101003JC); 国家自然科学基金(52073116); 中央高校科研基本业务费专项资金; 吉林大学科技创新研究团队(2021TD-03)

Research Progress of Solid-State Fluorescent Photoswitching Molecules

  • Jiasong Hu ,
  • Chunjuan Li ,
  • Bin Xu ,
  • Wenjing Tian
Expand
  • State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012

Received date: 2024-03-31

  Revised date: 2024-06-30

  Online published: 2024-07-18

Supported by

Natural Science Foundation of Jilin Province(20240101003JC); National Natural Science Foundation of China(52073116); Fundamental Research Funds for the Central Universities of China; Jilin University Science and Technology Innovative Research Team(2021TD-03)

摘要

荧光光开关分子具有良好的快速响应性、可逆性和抗疲劳性, 在防伪、超分辨成像、光学数据存储、传感器件等领域显示出巨大的应用潜能. 荧光光开关分子的荧光切换需要一定的空间自由度, 因此相比于溶液荧光光开关, 实现固态的荧光光开关具有一定的难度. 一个行之有效的方法是将聚集诱导发光(AIE)分子与荧光光开关分子通过共价键或超分子相互作用结合, AIE分子扭曲的构象可以为荧光光开关分子光照后的构型变化提供足够的空间, 从而实现固态的荧光光开关. 主要综述了这一策略在几种典型的光开关分子中的应用, 为新型固态荧光光开关分子体系的设计提供有效的参考, 对理解固态光开关分子刺激响应机制、开发新材料和拓展其应用具有重要意义.

本文引用格式

胡甲松 , 李春娟 , 徐斌 , 田文晶 . 固态荧光光开关分子研究进展[J]. 有机化学, 2024 , 44(8) : 2425 -2440 . DOI: 10.6023/cjoc202403056

Abstract

Fluorescent photoswitching molecules have been explored for their potential applications in the fields of anti- counterfeiting, super-resolution imaging, optical data storage, and sensor devices due to their fast response, reversibility, and fatigue resistance. The fluorescence switch of fluorescent photoswitching molecules requires a certain degree of spatial freedom, so compared to solution, achieving solid-state fluorescence switching is somewhat difficult. An effective method is to combine aggregation induced luminescence (AIE) molecules with fluorescent switching molecules through covalent bonds or supramolecular interactions, and the distorted conformation of AIE molecules can provide enough space for the configurational changes of fluorescent photoswitching molecules after light exposure, thus realizing solid-state fluorescent photoswitching. In this paper, the application of this strategy in several typical photoswitching molecules is mainly reviewed, providing a feasible reference for the design of novel solid-state fluorescent photoswitching molecular systems, which is crucial for understanding the stimulus-response mechanism of solid-state photoswitching molecules, developing new materials, and expanding their applications.

参考文献

[1]
Natali, M.; Giordani, S. Chem. Soc. Rev. 2012, 41, 4010.
[2]
Arai, Y.; Ito, S.; Fujita, H.; Yoneda, Y.; Kaji, T.; Takei, S.; Kashihara, R.; Morimoto, M.; Irie, M.; Miyasaka, H. Chem. Commun. 2017, 53, 4066.
[3]
Chai, X. Z.; Han, H. H.; Sedgwick, A. C.; Li, N.; Zang, Y.; James, T. D.; Zhang, J. J.; Hu, X. L.; Yu, Y.; Li, Y.; Wang, Y.; Li, J.; He, X. P.; Tian, H. J. Am. Chem. Soc. 2020, 142, 18005.
[4]
Champagne, B.; Plaquet, A.; Pozzo, J. L.; Rodriguez, V.; Castet, F. J. Am. Chem. Soc. 2012, 134, 8101.
[5]
Chen, L.; Wu, J. C.; Schmuck, C.; Tian, H. Chem. Commun. 2014, 50, 6443.
[6]
Irie, M.; Fulcaminato, T.; Matsuda, K.; Kobatake, S. Chem. Rev. 2014, 114, 12174.
[7]
Jia, C. C.; Migliore, A.; Xin, N.; Huang, S. Y.; Wang, J. Y.; Yang, Q.; Wang, S. P.; Chen, H. L.; Wang, D. M.; Feng, B. Y.; Liu, Z. R.; Zhang, G. Y.; Qu, D. H.; Tian, H.; Ratner, M. A.; Xu, H. Q.; Nitzan, A.; Guo, X. F. Scienc. 2016, 352, 1443.
[8]
Li, Y. H.; Duan, Y.; Li, J. S.; Zheng, J.; Yu, H.; Yang, R. H. Anal. Chem. 2012, 84, 4732.
[9]
Tsujioka, T.; Onishi, I.; Natsume, D. Appl. Opt. 2010, 49, 3894.
[10]
Yan, J.; Zhao, L. X.; Li, C.; Hu, Z.; Zhang, G. F.; Chen, Z. Q.; Chen, T.; Huang, Z. L.; Zhu, J. T.; Zhu, M. Q. J. Am. Chem. Soc. 2015, 137, 2436.
[11]
Han, P.; Qin, A. Chin. J. Org. Chem. 2023, 43, 2254 (in Chinese).
[11]
(韩鹏博, 秦安军, 有机化学, 2023, 43, 2254.)
[12]
Jung, H. Y.; Kim, B.; Jeon, M. H.; Kim, Y. Smal. 2022, 18, 2103523.
[13]
Kashihara, R.; Morimoto, M.; Ito, S.; Miyasaka, H.; Irie, M. J. Am. Chem. Soc. 2017, 139, 16498.
[14]
Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.
[15]
Ranganathan, A.; Kulkarni, G. U. Proc. Indian Acad. Sci. 2003, 115, 637.
[16]
Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Tang, B. Z.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Chem. Commun. 2001, 1740.
[17]
Xu, H.; Han, P.; Qin, A.; Tang, B. Z. Acta Chim. Sinic. 2023, 81, 1420 (in Chinese).
[17]
(徐赫, 韩鹏博, 秦安军, 唐本忠, 化学学报, 2023, 81, 1420.)
[18]
He, J. T.; Xu, B.; Chen, F. P.; Xia, H. J.; Li, K. P.; Ye, L.; Tian, W. J. J. Phys. Chem. C 2009, 113, 9892.
[19]
Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun. 2009, 4332.
[20]
Zhang, L.; Wang, Y.; Zhu, G.; Dai, W.; Zhao, Z.; Zhao, Y.; Zhi, J.; Dong, Y. Acta Chim. Sinic. 2022, 80, 282 (in Chinese).
[20]
(张璐璐, 王媛媛, 朱贵楠, 戴文博, 赵紫璇, 赵盈, 支俊格, 董宇平, 化学学报, 2022, 80, 282.)
[21]
Zhao, Y.-Q.; Zhang, X.; Yang, Y. R.; Zhu, L. P.; Zhou, Y. Acta Chim. Sinic. 2024, 82, 265 (in Chinese).
[21]
(赵玉强, 张霞, 杨芸如, 朱立平, 周莹, 化学学报, 2024, 82, 265.)
[22]
Zhao, Y.; Chen, P.; Li, G.; Niu, Z.; Wang, E. Chin. J. Org. Chem. 2023, 43, 2156 (in Chinese).
[22]
(赵洋, 陈盼盼, 李高楠, 钮智刚, 王恩举, 有机化学, 2023, 43, 2156.)
[23]
Zhang, Y.; Nie, F.; Zhou, L.; Wang, X.; Liu, Y.; Huo, Y.; Chen, W.; Zhao, Z. Chin. J. Org. Chem. 2023, 43, 3876 (in Chinese).
[23]
(张越华, 聂飞, 周路, 王晓烽, 刘源, 霍延平, 陈文铖, 赵祖金, 有机化学, 2023, 43, 3876.)
[24]
Zeng, C.; Hu, P.; Wang, B.; Fang, W.; Zhao, K.; Donnio, B. Acta Chim. Sinic. 2023, 81, 469 (in Chinese).
[24]
(曾崇洋, 胡平, 汪必琴, 方文彦, 赵可清, Donnio Bertrand, 化学学报, 2023, 81, 469.)
[25]
Liu, B.; Chen, P. Acta Chim. Sinic. 2022, 80, 929 (in Chinese).
[25]
(刘斌, 陈磅宽, 化学学报, 2022, 80, 929.)
[26]
Lu, H.; Ma, L.; Ma, H. Chin. J. Org. Chem. 2023, 43, 4075 (in Chinese).
[26]
(鲁会名, 马拉毛草, 马恒昌, 有机化学, 2023, 43, 4075.)
[27]
Zhao, Y.; Chen, P.; Han, L.; Wang, E. Chin. J. Org. Chem. 2023, 43, 2454 (in Chinese).
[27]
(赵洋, 陈盼盼, 韩立志, 王恩举, 有机化学, 2023, 43, 2454.)
[28]
Chen, Y.-J.; Pu, M.-Q.; Wu, L.-T.; Sun, X.-L., Wan, W.-M. Chin. J. Chem. 2023, 41, 1705.
[29]
Gui, Y.; Chen, K.; Sun, Y.; Tan, Y.; Luo, W.; Zhu, D.; Xiong, Y.; Yan, D.; Wang, D.; Tang, B. Z. Chin. J. Chem. 2023, 41, 1249.
[30]
Wang, Y.; Liu, X.; Li, H.; Liu, X.; Wang, L.; Liu, Y. Chin. J. Chem. 2022, 40, 2393.
[31]
Zeng, C.; Hu, P.; Wang, B.; Fang, W.; Zhao, K. Chin. J. Org. Chem. 2023, 43, 3287 (in Chinese).
[31]
(曾崇洋, 胡平, 汪必琴, 方文彦, 赵可清, 有机化学, 2023, 43, 3287.)
[32]
Feng, X.; Zhu, L.; Yue, B. Acta Chim. Sinic. 2022, 80, 647 (in Chinese).
[32]
(冯锡成, 朱亮亮, 岳兵兵, 化学学报, 2022, 80, 647.)
[33]
Zhao, Z.; Lam, J. W. Y.; Tang, B. Z. J. Mater. Chem. 2012, 22, 23726.
[34]
de Jong, J. J. D.; Browne, W. R.; Walko, M.; Lucas, L. N.; Barrett, L. J.; McGarvey, J. J.; van Esch, J. H.; Feringa, B. L. Org. Biomol. Chem. 2006, 4, 2387.
[35]
Ishibashi, Y.; Murakami, M.; Miyasaka, H.; Kobatake, S.; Irie, M.; Yokoyama, Y. J. Phys. Chem. C 2007, 111, 2730.
[36]
Han, M.; Morino, S. y.; Ichimura, K. Macromolecule. 2000, 33, 6360.
[37]
Petermayer, C.; Dube, H. Acc. Chem. Res. 2018, 51, 1153.
[38]
Motokura, K.; Kang, B.; Fujii, M.; Nesterenko, D. V.; Sekkat, Z.; Hayashi, S. J. Appl. Phys. 2020, 127, 073103.
[39]
Zhang, T.; Lou, X.-Y.; Li, X.; Tu, X.; Han, J.; Zhao, B.; Yang, Y.-W. Adv. Mater. 2023, 35, 2210551.
[40]
Gonzalez, A.; Kengmana, E. S.; Fonseca, M. V.; Han, G. G. D. Mater. Today Adv. 2020, 6, 100058.
[41]
Zhu, W.; Meng, X.; Yang, Y.; Zhang, Q.; Xie, Y.; Tian, H. Chem. Eur. J. 2010, 16, 899.
[42]
Li, W.; Jiao, C.; Li, X.; Xie, Y.; Nakatani, K.; Tian, H.; Zhu, W. Angew. Chem., Int. Ed. 2014, 53, 4603.
[43]
Strübe, F.; Rath, S.; Mattay, J. Eur. J. Org. Chem. 2011, 2011, 4645.
[44]
Bhattacharjee, U.; Freppon, D.; Men, L.; Vela, J.; Smith, E. A.; Petrich, J. W. ChemPhysChe. 2017, 18, 2526.
[45]
Liu, R. S.; Asato, A. E. Proc. Nail. Acad. Sci. 1985, 82, 259.
[46]
Krysanov, S. A.; Alfimov, M. V. Chem. Phys. Lett. 1982, 91, 77.
[47]
Harada, J.; Kawazoe, Y.; Ogawa, K. Chem. Commun. 2010, 46, 2593.
[48]
Klajn, R. Chem. Soc. Rev. 2014, 43, 148.
[49]
Hong, Y.; Zhang, P.; Wang, H.; Yu, M.; Gao, Y.; Chen, J. Sens. Actuator., B 2018, 272, 340.
[50]
Nhien, P. Q.; Chou, W.-L.; Cuc, T. T. K.; Khang, T. M.; Wu, C.-H.; Thirumalaivasan, N.; Hue, B. T. B.; Wu, J. I.; Wu, S.-P.; Lin, H.-C. ACS Appl. Mater. Interface. 2020, 12, 10959.
[51]
Nhien, P. Q.; Chang, H.-K.; Cuc, T. T. K.; Khang, T. M.; Wu, C.-H.; Hue, B. T. B.; Wu, J. I.; Lin, H.-C. Sens. Actuator., B 2022, 372, 132634.
[52]
Wang, L.; Xiong, W.; Tang, H.; Cao, D. J. Mater. Chem. C 2019, 7, 9102.
[53]
Qi, Q.; Qian, J.; Ma, S.; Xu, B.; Zhang, S. X.-A.; Tian, W. Chem. Eur. J. 2015, 21, 1149.
[54]
Yu, Q.; Su, X.; Zhang, T.; Zhang, Y.-M.; Li, M.; Liu, Y.; Zhang, S. X.-A. J. Mater. Chem. C 2018, 6, 2113.
[55]
Wang, H.; Tang, J.; Deng, H.; Tian, Y.; Lin, Z.; Cui, J.; Chen, J. J. Mater. Chem. C 2023, 11, 15945.
[56]
Fang, B.; Chu, M.; Tan, L.; Li, P.; Hou, Y.; Shi, Y.; Zhao, Y. S.; Yin, M. ACS Appl. Mater. Interface. 2019, 11, 38226.
[57]
Qi, Q.; Li, C.; Liu, X.; Jiang, S.; Xu, Z.; Lee, R.; Zhu, M.; Xu, B.; Tian, W. J. Am. Chem. Soc. 2017, 139, 16036.
[58]
Yang, R.; Ren, X.; Mei, L.; Pan, G.; Li, X.-Z.; Wu, Z.; Zhang, S.; Ma, W.; Yu, W.; Fang, H.-H.; Li, C.; Zhu, M.-Q.; Hu, Z.; Sun, T.; Xu, B.; Tian, W. Angew. Chem., Int. Ed. 2022, 61, e202117158.
[59]
Bates, M.; Huang, B.; Zhuang, X. Curr. Opin. Chem. Biol. 2008, 12, 505.
[60]
Wei, Z.; Gourevich, I.; Field, L.; Coombs, N.; Kumacheva, E. Macromolecule. 2006, 39, 2441.
[61]
Nhien, P. Q.; Cuc, T. T. K.; Khang, T. M.; Wu, C.-H.; Hue, B. T. B.; Wu, J. I.; Mansel, B. W.; Chen, H.-L.; Lin, H.-C. ACS Appl. Mater. Interfaces. 2020, 12, 47921.
[62]
Yang, R. Q.; Jiao, Y.; Wang, B. Y.; Xu, B.; Tian, W. J. J. Phys. Chem. Lett. 2021, 12, 1290.
[63]
Guo, Y.; Zhu, W.; Tao, M.; Wu, X.; Chen, J.; Peng, X.; Zheng, S.; Zhao, Z.; Cao, Z. ACS Appl. Mater. Interface. 2022, 14, 39384.
[64]
Irie, M. Photochem. Photobiol. Sci. 2010, 9, 1535.
[65]
Poon, C.-T.; Lam, W. H.; Yam, V. W.-W. J. Am. Chem. Soc. 2011, 133, 19622.
[66]
Asadirad, A. M.; Boutault, S.; Erno, Z.; Branda, N. R. J. Am. Chem. Soc. 2014, 136, 3024.
[67]
Roubinet, B.; Weber, M.; Shojaei, H.; Bates, M.; Bossi, M. L.; Belov, V. N.; Irie, M.; Hell, S. W. J. Am. Chem. Soc. 2017, 139, 6611.
[68]
Yu, M.; Wang, H.; Li, Y.; Zhang, P.; Chen, S.; Zeng, R.; Gao, Y.; Chen, J. J. Appl. Polym. Sci. 2019, 136, 47466.
[69]
Ma, L.; Li, C.; Yan, Q.; Wang, S.; Miao, W.; Cao, D. Chin. Chem. Lett. 2020, 31, 361.
[70]
Liang, X.; Hu, H.; Zheng, Z.-g.; He, M.; Li, M.; Lv, N.; Shen, N.; Zhu, W.-H. Ind. Eng. Chem. Res. 2023, 62, 9961.
[71]
Liu, L.; Hao, T.; Wu, W.; Yang, C. Chin. J. Org. Chem. 2023, 43, 2189 (in Chinese).
[71]
(刘铃, 浩涛涛, 伍晚花, 杨成, 有机化学, 2023, 43, 2189.)
[72]
Li, C.; Gong, W.-L.; Hu, Z.; Aldred, M. P.; Zhang, G.-F.; Chen, T.; Huang, Z.-L.; Zhu, M.-Q. RSC Adv. 2013, 3, 8967.
[73]
Li, C.; Xiong, K.; Chen, Y.; Fan, C.; Wang, Y.-L.; Ye, H.; Zhu, M.-Q. ACS Appl. Mater. Interface. 2020, 12, 27651.
[74]
Yang, H.; Li, M.; Li, C.; Luo, Q.; Zhu, M.-Q.; Tian, H.; Zhu, W.-H. Angew. Chem., Int. Ed. 2020, 59, 8560.
[75]
Wu, Y.; Zhan, J.; Han, Z.; Liu, W.; Qian, Z.; Feng, H. J. Mater. Chem. C 2024, 12, 2552.
[76]
Zhu, Q.; Zuo, J.; Ping, X.; Zhu, Y.; Cai, X.; Xiong, Z.; Qian, Z.; Feng, H. J. Mater. Chem. C 2022, 10, 8674.
[77]
Zhou, S.; Guo, S.; Liu, W.; Ding, R.; Sun, H.; Chen, J.; Qian, Z.; Feng, H. J. Mater. Chem. C 2021, 9, 8249.
[78]
Zhou, S.; Guo, S.; Liu, W.; Yang, Q.; Sun, H.; Ding, R.; Qian, Z.; Feng, H. J. Mater. Chem. C 2020, 8, 13197.
[79]
Guo, S.; Zhou, S.; Chen, J.; Guo, P.; Ding, R.; Sun, H.; Feng, H.; Qian, Z. ACS Appl. Mater. Interface. 2020, 12, 42410.
[80]
Yang, H.; Li, M.; Zhao, W.; Guo, Z.; Zhu, W.-H. Chin. Chem. Lett. 2021, 32, 3882.
[81]
Khang, T. M.; Nhien, P. Q.; Cuc, T. T. K.; Weng, C.-C.; Wu, C.-H.; Wu, J. I.; Hue, B. T. B.; Li, Y.-K.; Lin, H.-C. Smal. 2023, 19, 2205597.
[82]
Alene, D. Y.; Srinivasadesikan, V.; Lin, M.-C.; Chung, W.-S. J. Org. Chem. 2023, 88, 5530.
[83]
Li, J.-J.; Zhang, H.-Y.; Liu, G.; Dai, X.; Chen, L.; Liu, Y. Adv. Opt. Mater. 2021, 9, 2001702.
[84]
Han, M. N.; Cho, S. J.; Norikane, Y.; Shimizu, M.; Kimura, A.; Tamagawa, T.; Seki, T. Chem. Commun. 2014, 50, 15815.
[85]
Jerca, F. A.; Jerca, V. V.; Hoogenboom, R. Nat. Rev. Chem. 2022, 6, 51.
[86]
Zhou, L.; Retailleau, P.; Morel, M.; Rudiuk, S.; Baigl, D. J. Am. Chem. Soc. 2019, 141, 9321.
[87]
Sekine, A.; Yamagiwa, H.; Uekusa, H. Chem. Lett. 2012, 41, 795.
[88]
Baroncini, M.; d'Agostino, S.; Bergamini, G.; Ceroni, P.; Comotti, A.; Sozzani, P.; Bassanetti, I.; Grepioni, F.; Hernandez, T. M.; Silvi, S.; Venturi, M.; Credi, A. Nat. Chem. 2015, 7, 634.
[89]
Qi, Q.; Huang, S.; Liu, X.; Aprahamian, I. J. Am. Chem. Soc. 2024, 146, 6471.
[90]
Wu, B.; Wang, W.; Wang, J.; Li, S.; He, Y. Dyes Pigm. 2018, 157, 290.
[91]
Yu, X.; Chen, H.; Shi, X.; Albouy, P.-A.; Guo, J.; Hu, J.; Li, M.-H. Mater. Chem. Front. 2018, 2, 2245.
[92]
You, J.; Zhang, S.; Li, Q.; Zhang, W.; Ma, H.; Hou, J.; Zhao, E.; He, Z. Dyes Pigm. 2023, 220, 111662.
[93]
Jiao, Y.; Yang, R.; Luo, Y.; Liu, L.; Xu, B.; Tian, W. CCS Chem. 2022, 4, 132.
[94]
Weerasekara, R. K.; Uekusa, H.; Hettiarachchi, C. V. Cryst. Growth Des. 2017, 17, 3040.
文章导航

/