α,α-二氟-β-氨基膦酸酯的合成与应用研究进展
收稿日期: 2024-05-13
修回日期: 2024-06-22
网络出版日期: 2024-07-18
基金资助
国家自然科学基金(21761132021)
Recent Advances on the Synthesis and Application of α,α-Difluoro-β-aminophosphonates
Received date: 2024-05-13
Revised date: 2024-06-22
Online published: 2024-07-18
Supported by
National Natural Science Foundation of China(21761132021)
杜友龙 , 王倩 , 梅海波 , Romana Pajkert , Gerd-Volker R?schenthaler , 韩建林 . α,α-二氟-β-氨基膦酸酯的合成与应用研究进展[J]. 有机化学, 2024 , 44(12) : 3686 -3701 . DOI: 10.6023/cjoc202405013
α,α-Difluoro-β-aminophosphonates can be looked as structural analogies with α-amino acids, which have attracted great attention in biological and medicinal chemistry during the past decades. Furthermore, these compounds also belong to an important type of organic building blocks for the rapid synthesis of difluoromethylenephosphonate-containing molecules. Thus, the preparation and application of α,α-difluoro-β-aminophosphonates are hot research topics in organic phosphine chemistry. A comprehensive summary of the literature reports related to α,α-difluoro-β-aminophosphonates in recent years is presented. And aspects of synthesis and applications of α,α-difluoro-β-aminophosphonates are discussed, in order to provide critical guidance for the further development of reactions and applications for the synthesis of difluoromethylenephosphonate derivatives.
| [1] | (a) Kukhar V. P.; Hudson H. R. Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity, Wiley, Chichester, UK, 2000. |
| [1] | (b) Kafarski P.; Lejczak B. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 63, 193. |
| [1] | (c) Naydenova E. D.; Todorov P. T.; Troev K. D. Amino Acids 2010, 38, 23. |
| [1] | (d) Galezowska J.; Gumienna-Kontecka E. Coord. Chem. Rev. 2012, 256, 105. |
| [1] | (e) Mucha A.; Kafarski P.; Berlicki ?. J. Med. Chem. 2011, 54, 5955. |
| [2] | (a) Palacios F.; Alonso C.; Santos J. M. Chem. Rev. 2005, 105, 899. |
| [2] | (b) Ma J. A. Chem. Soc. Rev. 2006, 35, 630. |
| [2] | (c) Cao H. Q.; Li J. K.; Zhang F. G.; Cahard D.; Ma J. A. Adv. Synth. Caltal. 2021, 363, 688. |
| [3] | Kudzin Z. H.; Kudzin M. H.; Drabowicz J.; Stevens V. C. Curr. Org. Chem. 2011, 15, 2015. |
| [4] | (a) Wardle N. J.; Bligh S. W.; Hudson H. R. Curr. Org. Chem. 2007, 11, 1635. |
| [4] | (b) Ordonez M.; Rojas-Cabrera H.; Cativiela C. Tetrahedron 2009, 65, 17. |
| [4] | (c) Soloshonok V. A.; Belokon Y. N. N.; Kuzmina A.; Maleev V. I.; Svistunova N. Y.; Solodenko V. A.; Kukhar V. P. J. Chem. Soc., Perkin Trans. 1 1992, 1525. |
| [5] | (a) Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009. |
| [5] | (b) Uneyama K. Organofluorine Chemistry, Blackwell Publishing Ltd, Oxford, 2006. |
| [5] | (c) Wang Q.; Bian Y.; Dhawan G.; Zhang W.; Sorochinsky A. E.; Makarem A.; Soloshonok V.; Han J. Chin. Chem. Lett. 2024, 35, 109780. |
| [5] | (d) He J.; Li Z.; Dhawan G.; Zhang W.; Sorochinsky A. E.; Butler G.; Soloshonok V. A.; Han J. Chin. Chem. Lett. 2023, 34, 107578. |
| [5] | (e) Hagmann W. K. J. Med. Chem. 2008, 51, 4359. |
| [5] | (f) Yu Y.; Liu A.; Dhawan G.; Mei H.; Zhang W.; Izawa K.; Soloshonok V. A.; Han J. Chin. Chem. Lett. 2021, 32, 3342. |
| [6] | O’Hagan D.; Rzepa H. S. Chem. Commun. 1997, 645. |
| [7] | (a) Turcheniuk K. V.; Kukhar V. P.; R?schenthaler G. V.; Ace?a J. L.; Soloshonok V. A.; Sorochinsky A. E. RSC Adv. 2013, 3, 6693. |
| [7] | (b) Makhaeva G. F.; Aksinenko A. Y.; Sokolov V. B.; Baskin I. I.; Palyulin V. A.; Zefirov N. S.; Hein N. D.; Kampf J. W.; Wijeye- sakere S. J.; Richardson R. J. Chem. Biol. Interact. 2010, 187, 177. |
| [7] | (c) Cytlak T.; Ka?mierczak M.; Skibińska M.; Koroniak H. Phosphorus, Sulfur Silicon Relat. Elem. 2017, 192, 602. |
| [8] | (a) Shevchuk M.; Wang Q.; Pajkert R.; Xu J.; Mei H.; R?schenthaler G.-V.; Han J. Adv. Synth. Catal. 2021, 363, 2912. |
| [8] | (b) Romanenko V. D.; Kukhar V. P. Chem. Rev. 2006, 106, 3868. |
| [9] | (a) Burke T.; Smyth M.; Otaka A.; Nomizu M.; Roller P.; Wolf G.; Case R.; Shoelson S. Biochemistry 1994, 33, 6490. |
| [9] | (b) Chen L.; Wu L.; Otaka A.; Smyth M.; Roller P.; Burke T.; Hertog J.; Zhang Z. Biochem. Biophys. Res. Commun. 1995, 216, 976. |
| [9] | (c) Chen H.; Cong L.; Li Y.; Yao Z.; Wu L.; Zhang Z.; Burke T.; Quon M. Biochemistry 1999, 38, 384. |
| [9] | (d) Higashimoto Y.; Saito S.; Tong X.; Hong A.; Sakaguchi K.; Appela E.; Anderson C. J. Biol. Chem. 2000, 275, 23199. |
| [9] | (e) Yokomatsu T.; Murano T.; Akiyama T.; Koizumi J.; Shibuya S.; Tsuji Y.; Soeda S.; Shimeno H. Bioorg. Med. Chem. Lett. 2003, 13, 229. |
| [9] | (f) Gautier-Lefebvre I.; Behr J.-B.; Guillerm G.; Ryder N. Bioorg. Med. Chem. Lett. 2000, 10, 1483. |
| [9] | (g) Pfund E.; Lequeux T.; Masson S.; Vazeux M.; Cordi A.; Pierre A.; Serre V.; Hervé G. Bioorg. Med. Chem. 2005, 13, 4921. |
| [9] | (h) Hakogi T.; Yamamoto T.; Fujii S.; Ikeda K.; Katsumura S. Tetrahedron Lett. 2006, 47, 2627. |
| [9] | (i) Koga Y.; Okuda T.; Watanuki S.; Kamikubo T.; Hirayama F.; Moritomo H.; Fujiyasu J.; Kageyama M.; Uemura T.; Takasaki J. WO 2007105751, 2007. |
| [9] | (j) Wu L.; Zhan Z.; Qian Y.; Wang J.; Chen S. WO 2021058024, 2021. |
| [10] | Chambers R. D.; O’Hagan D.; Lamont R. B.; Jain S. C. J. Chem. Soc., Chem. Commun. 1990, 1053. |
| [11] | (a) Xu Y.; Aoki J.; Shimizu K.; Umezu-Goto M.; Hama K.; Takanezawa Y.; Yu S.; Mills G. B.; Arai H.; Qian L.; Prestwich G. D. J. Med. Chem. 2005, 48, 3319. |
| [11] | (b) Wang J.; Fei X.; Gardner T. A.; Hutchins G. D.; Zheng Q. Bioorg. Med. Chem. 2005, 13, 549. |
| [12] | (a) Behr J.-B.; Evina C.; Phung N.; Guillerm G. J. Chem. Soc., Perkin Trans. 1 1997, 1597. |
| [12] | (b) Cocaud C.; Nicolas C.; Poisson T.; Pannecoucke X.; Legault C. Y.; Martin O. R. J. Org. Chem. 2017, 82, 2753. |
| [13] | (a) R?schenthaler G.-V.; Kukhar V.; Barten J.; Gvozdovska N.; Belik M.; Sorochinsky A. Tetrahedron Lett. 2004, 45, 6665. |
| [13] | (b) R?schenthaler G.-V.; Kukhar V. P.; Belik M. Y.; Mazurenko K. I.; Sorochinsky A. E. Tetrahedron 2006, 62, 9902. |
| [14] | Cherkupally P.; Beier P. J. Fluorine Chem. 2012, 141, 76. |
| [15] | Henry-dit-Quesnel A.; Toupet L.; Pommelet J.-C.; Lequeux T. Org. Biomol. Chem. 2003, 1, 2486. |
| [16] | Van Tran T.; Désiré J.; Auberger N.; Blériot Y. J. Org. Chem. 2022, 87, 7581. |
| [17] | Kosobokov M. D.; Dilman A. D.; Struchkova M. I.; Belyakov P. A.; Hu J. J. Org. Chem. 2012, 77, 2080. |
| [18] | Das M.; O’Shea D. F. Chem.-Eur. J. 2015, 21, 18717. |
| [19] | Chen Q.; Zhou J.; Wang Y.; Wang C.; Liu X.; Xu Z.; Lin L.; Wang R. Org. Lett. 2015, 17, 4212. |
| [20] | Xie C.; Zhang L.; Mei H.; Pajkert R.; Ponomarenko M.; Pan Y.; R?schenthaler G.-V.; Soloshonok V. A.; Han J. Chem.-Eur. J. 2016, 22, 7036. |
| [21] | (a) Rapp M.; Szewczyk M. Z.; Koroniak H. J. Fluorine Chem. 2014, 167, 152. |
| [21] | (b) Szewczyk M. Z.; Rapp M.; Virieux D.; Pirat J.-L.; Koroniak H. New J. Chem. 2017, 41, 6322. |
| [22] | Xie J.; Zhang T.; Chen F.; Mehrkens N.; Rominger F.; Rudolph M.; Hashmi A. S. K. Angew. Chem., Int. Ed. 2016, 55, 2934. |
| [23] | Obayashi M.; Kondo K. Tetrahedron Lett. 1982, 23, 2327. |
| [24] | (a) Waschbüsch R.; Samadi M.; Savignac P. A. J. Organomet. Chem. 1997, 529, 267. |
| [24] | (b) Alexandrova A. V.; Beier P. J. Fluorine Chem. 2009, 130, 493. |
| [25] | Czerwiński P. J.; Furman B. Chem. Commun. 2019, 55, 9436. |
| [26] | (a) Escorihuela J.; Fustero S. Chem. Rec. 2023, 23, e202200262. |
| [26] | (b) Bégué J. P.; Bonnet-Delpon D.; Crousse B.; Legros J. Chem. Soc. Rev. 2005, 34, 562. |
| [26] | (c) Mei H.; Han J.; Fustero S.; Román R.; Ruzziconi R.; Soloshonok V. A. J. Fluorine Chem. 2018, 216, 57. |
| [27] | Dilman A. D.; Levin V. V. Eur. J. Org. Chem. 2011, 2011, 831. |
| [28] | (a) Froidevaux V.; Negrell C.; Caillol S.; Pascault J. P.; Boutevin B. Chem. Rev. 2016, 116, 14181. |
| [28] | (b) Pelckmans M.; Renders T.; Van de Vyver S.; Sels B. F. Green Chem. 2017, 19, 5303. |
| [28] | (c) Cabré A.; Verdaguer X.; Riera A. Chem. Rev. 2022, 122, 269. |
| [28] | (d) Compain P. Adv. Synth. Catal. 2007, 349, 1829. |
| [28] | (e) Yin Q.; Shi Y.; Wang J.; Zhang X. Chem. Soc. Rev. 2020, 49, 6141. |
| [28] | (f) Trowbridge A.; Walton S. M.; Gaunt M. J. Chem. Rev. 2020, 120, 2613. |
| [29] | ((a) Serafini M.; Cargnin S.; Massarotti A.; Pirali T.; Genazzani A. A. J. Med. Chem. 2020, 63, 10170. |
| [30] | (a) Nagaraaj P.; Vijayakumara V. Org. Chem. Front. 2019, 6, 2570. |
| [30] | (b) Berger K. J.; Levin M. D. Org. Biomol. Chem. 2021, 19, 11. |
| [30] | (c) Yamamoto Y.; Kodama S.; Nomotoa A.; Ogawa A. Org. Biomol. Chem. 2022, 20, 9503. |
| [31] | Shevchuk M. V.; Sorochinsky A. E.; Khilya V. P.; Romanenko V. D.; Kukhar V. P. Synlett 2010, 73. |
| [32] | (a) Li P.; Jia X. Synthesis 2018, 50, 711. |
| [32] | (b) Dahiya A.; Sahoo A. K.; Alam T.; Patel B. K. Chem.-Asian J. 2019, 14, 4454. |
| [33] | (a) Ciszewski ?. W.; Rybicka-Jasińska K.; Gryko D. Org. Biomol. Chem. 2019, 17, 432. |
| [33] | (b) Xiao Q.; Zhang Y.; Wang J. Acc. Chem. Res. 2013, 46, 236. |
| [33] | (c) Fulton J. R.; Aggarwal V. K.; de Vicente J. Eur. J. Org. Chem. 2005, 2005, 1479. |
| [33] | (d) Maas G. Angew. Chem., Int. Ed. 2009, 48, 8186. |
| [33] | (e) Candeias N. R.; Paterna R.; Gois P. M. P. Chem. Rev. 2016, 116, 2937. |
| [34] | Mix K. A.; Aronoff M. R.; Raines R. T. ACS Chem. Biol. 2016, 11, 3233. |
| [35] | (a) Mertens L.; Koenigs R. M. Org. Biomol. Chem. 2016, 14, 10547. |
| [35] | (b) Sivaguru P.; Bi X. Sci. China: Chem. 2021, 64, 1614. |
| [35] | (c) Hock K. J.; Mertens L.; Metze F. K.; Schmittmann C.; Koenigs R. M. Green Chem. 2017, 19, 905. |
| [36] | Mei H.; Liu J.; Pajkert R.; Wang L.; R?schenthaler G. V.; Han J. Org. Chem. Front. 2021, 8, 767. |
| [37] | Liu J.; Xu J.; Pajkert R.; Mei H.; R?schenthaler G. V.; Han J. Acta Chim. Sinica 2021, 79, 747 (in Chinese). |
| [37] | (刘江, 徐敬成, Romana Pajkert, 梅海波, Gerd-Volker R?schenthaler, 韩建林, 化学学报, 2021, 79, 747.) |
| [38] | Li Z.; Yao X.; Zhang X.; Mei H.; Han J. J. Org. Chem. 2022, 87, 15483. |
| [39] | Mei H.; Wang L.; Pajkert R.; Wang Q.; Xu J.; Liu J.; R?schenthaler G. V.; Han J. Org. Lett. 2021, 23, 1130. |
| [40] | Wang Q.; Wang L.; Pajkert R.; Hajdin I.; Mei H.; R?schenthaler G. V.; Han J. J. Fluorine Chem. 2021, 251, 109899. |
| [41] | Zhai S. J.; Cahard D.; Zhang F. G.; Ma J. A. Chin. Chem. Lett. 2022, 33, 863. |
| [42] | (a) Khanal H. D.; Thombal R. S.; Maezono S. M. B.; Lee Y. R. Adv. Synth. Catal. 2018, 360, 3185. |
| [42] | (b) Schnaars C.; Hennum M.; Bonge-Hansen T. J. Org. Chem. 2013, 78, 7488. |
| [43] | Liu J.; Pajkert R.; Wang L.; Mei H.; R?schenthaler G. V.; Han J. Chin. Chem. Lett. 2022, 33, 2429. |
| [44] | Lu Y.; Huang C.; Liu C.; Guo Y.; Chen Q. Y. Eur. J. Org. Chem. 2018, 2018, 2082. |
| [45] | Zhang F. G.; Lv N.; Zheng Y.; Ma J. A. Chin. J. Chem. 2018, 36, 723. |
| [46] | Zhang F. G.; Zeng J. L.; Tian Y. Q.; Zheng Y.; Cahard D.; Ma J. A. Chem.-Eur. J. 2018, 24, 7749. |
| [47] | Wang Q.; Liu J.; Wang N.; Pajkert R.; Mei H.; R?schenthaler G. V.; Han J. Adv. Synth. Catal. 2022, 364, 1969. |
| [48] | Wang Q.; Pajkert R.; Mei H.; R?schenthaler G. V.; Han J. J. Fluorine Chem. 2024, 273, 110226. |
| [49] | Wang Q.; Liu J.; Mei H.; Pajkert R.; R?schenthaler G. V.; Han J. Adv. Synth. Catal. 2023, 365, 2883. |
| [50] | Zhang X.; Zhang X.; Song Q.; Sivaguru P.; Wang Z.; Zanoni G. Bi X. Angew. Chem., Int. Ed. 2022, 61, e202116190. |
| [51] | Wang Q.; Liu J.; Mei H.; Pajkert R.; Kessler M.; R?schenthaler G. V.; Han J. Org. Lett. 2022, 24, 8036. |
/
| 〈 |
|
〉 |