综述与进展

α,α-二氟-β-氨基膦酸酯的合成与应用研究进展

  • 杜友龙 ,
  • 王倩 ,
  • 梅海波 ,
  • Romana Pajkert ,
  • Gerd-Volker R?schenthaler ,
  • 韩建林
展开
  • a 南京林业大学化学工程学院 江苏省林业资源高效加工利用协调创新中心 南京 210037
    b 康斯特大学理学院 不来梅 28759 德国

收稿日期: 2024-05-13

  修回日期: 2024-06-22

  网络出版日期: 2024-07-18

基金资助

国家自然科学基金(21761132021)

Recent Advances on the Synthesis and Application of α,α-Difluoro-β-aminophosphonates

  • Youlong Du ,
  • Qian Wang ,
  • Haibo Mei ,
  • Romana Pajkert ,
  • Gerd-Volker R?schenthaler ,
  • Jianlin Han
Expand
  • a Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037
    b School of Science, Constructor University Bremen gGmbH, 28759 Bremen, Germany

Received date: 2024-05-13

  Revised date: 2024-06-22

  Online published: 2024-07-18

Supported by

National Natural Science Foundation of China(21761132021)

摘要

α,α-二氟-β-氨基膦酸酯因含有一个氨基基团, 可以作为氨基酸的类似物, 在生物化学领域引起了广泛的研究兴趣. 更重要的是, 这类化合物还是非常高效的有机合成中间体, 其在二氟膦酸酯衍生物的合成方面有非常重要的应用. 因此, α,α-二氟-β-氨基膦酸酯的合成和应用是磷化学领域的研究热点. 系统全面地总结了近些年有关α,α-二氟-β-氨基膦酸酯的研究进展, 讨论了α,α-二氟-β-氨基膦酸酯的合成及其相关的反应, 以期为二氟膦酸酯衍生物的合成研究提供一定的参考.

本文引用格式

杜友龙 , 王倩 , 梅海波 , Romana Pajkert , Gerd-Volker R?schenthaler , 韩建林 . α,α-二氟-β-氨基膦酸酯的合成与应用研究进展[J]. 有机化学, 2024 , 44(12) : 3686 -3701 . DOI: 10.6023/cjoc202405013

Abstract

α,α-Difluoro-β-aminophosphonates can be looked as structural analogies with α-amino acids, which have attracted great attention in biological and medicinal chemistry during the past decades. Furthermore, these compounds also belong to an important type of organic building blocks for the rapid synthesis of difluoromethylenephosphonate-containing molecules. Thus, the preparation and application of α,α-difluoro-β-aminophosphonates are hot research topics in organic phosphine chemistry. A comprehensive summary of the literature reports related to α,α-difluoro-β-aminophosphonates in recent years is presented. And aspects of synthesis and applications of α,α-difluoro-β-aminophosphonates are discussed, in order to provide critical guidance for the further development of reactions and applications for the synthesis of difluoromethylenephosphonate derivatives.

参考文献

[1]
(a) Kukhar V. P.; Hudson H. R. Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity, Wiley, Chichester, UK, 2000.
[1]
(b) Kafarski P.; Lejczak B. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 63, 193.
[1]
(c) Naydenova E. D.; Todorov P. T.; Troev K. D. Amino Acids 2010, 38, 23.
[1]
(d) Galezowska J.; Gumienna-Kontecka E. Coord. Chem. Rev. 2012, 256, 105.
[1]
(e) Mucha A.; Kafarski P.; Berlicki ?. J. Med. Chem. 2011, 54, 5955.
[2]
(a) Palacios F.; Alonso C.; Santos J. M. Chem. Rev. 2005, 105, 899.
[2]
(b) Ma J. A. Chem. Soc. Rev. 2006, 35, 630.
[2]
(c) Cao H. Q.; Li J. K.; Zhang F. G.; Cahard D.; Ma J. A. Adv. Synth. Caltal. 2021, 363, 688.
[3]
Kudzin Z. H.; Kudzin M. H.; Drabowicz J.; Stevens V. C. Curr. Org. Chem. 2011, 15, 2015.
[4]
(a) Wardle N. J.; Bligh S. W.; Hudson H. R. Curr. Org. Chem. 2007, 11, 1635.
[4]
(b) Ordonez M.; Rojas-Cabrera H.; Cativiela C. Tetrahedron 2009, 65, 17.
[4]
(c) Soloshonok V. A.; Belokon Y. N. N.; Kuzmina A.; Maleev V. I.; Svistunova N. Y.; Solodenko V. A.; Kukhar V. P. J. Chem. Soc., Perkin Trans. 1 1992, 1525.
[5]
(a) Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009.
[5]
(b) Uneyama K. Organofluorine Chemistry, Blackwell Publishing Ltd, Oxford, 2006.
[5]
(c) Wang Q.; Bian Y.; Dhawan G.; Zhang W.; Sorochinsky A. E.; Makarem A.; Soloshonok V.; Han J. Chin. Chem. Lett. 2024, 35, 109780.
[5]
(d) He J.; Li Z.; Dhawan G.; Zhang W.; Sorochinsky A. E.; Butler G.; Soloshonok V. A.; Han J. Chin. Chem. Lett. 2023, 34, 107578.
[5]
(e) Hagmann W. K. J. Med. Chem. 2008, 51, 4359.
[5]
(f) Yu Y.; Liu A.; Dhawan G.; Mei H.; Zhang W.; Izawa K.; Soloshonok V. A.; Han J. Chin. Chem. Lett. 2021, 32, 3342.
[6]
O’Hagan D.; Rzepa H. S. Chem. Commun. 1997, 645.
[7]
(a) Turcheniuk K. V.; Kukhar V. P.; R?schenthaler G. V.; Ace?a J. L.; Soloshonok V. A.; Sorochinsky A. E. RSC Adv. 2013, 3, 6693.
[7]
(b) Makhaeva G. F.; Aksinenko A. Y.; Sokolov V. B.; Baskin I. I.; Palyulin V. A.; Zefirov N. S.; Hein N. D.; Kampf J. W.; Wijeye- sakere S. J.; Richardson R. J. Chem. Biol. Interact. 2010, 187, 177.
[7]
(c) Cytlak T.; Ka?mierczak M.; Skibińska M.; Koroniak H. Phosphorus, Sulfur Silicon Relat. Elem. 2017, 192, 602.
[8]
(a) Shevchuk M.; Wang Q.; Pajkert R.; Xu J.; Mei H.; R?schenthaler G.-V.; Han J. Adv. Synth. Catal. 2021, 363, 2912.
[8]
(b) Romanenko V. D.; Kukhar V. P. Chem. Rev. 2006, 106, 3868.
[9]
(a) Burke T.; Smyth M.; Otaka A.; Nomizu M.; Roller P.; Wolf G.; Case R.; Shoelson S. Biochemistry 1994, 33, 6490.
[9]
(b) Chen L.; Wu L.; Otaka A.; Smyth M.; Roller P.; Burke T.; Hertog J.; Zhang Z. Biochem. Biophys. Res. Commun. 1995, 216, 976.
[9]
(c) Chen H.; Cong L.; Li Y.; Yao Z.; Wu L.; Zhang Z.; Burke T.; Quon M. Biochemistry 1999, 38, 384.
[9]
(d) Higashimoto Y.; Saito S.; Tong X.; Hong A.; Sakaguchi K.; Appela E.; Anderson C. J. Biol. Chem. 2000, 275, 23199.
[9]
(e) Yokomatsu T.; Murano T.; Akiyama T.; Koizumi J.; Shibuya S.; Tsuji Y.; Soeda S.; Shimeno H. Bioorg. Med. Chem. Lett. 2003, 13, 229.
[9]
(f) Gautier-Lefebvre I.; Behr J.-B.; Guillerm G.; Ryder N. Bioorg. Med. Chem. Lett. 2000, 10, 1483.
[9]
(g) Pfund E.; Lequeux T.; Masson S.; Vazeux M.; Cordi A.; Pierre A.; Serre V.; Hervé G. Bioorg. Med. Chem. 2005, 13, 4921.
[9]
(h) Hakogi T.; Yamamoto T.; Fujii S.; Ikeda K.; Katsumura S. Tetrahedron Lett. 2006, 47, 2627.
[9]
(i) Koga Y.; Okuda T.; Watanuki S.; Kamikubo T.; Hirayama F.; Moritomo H.; Fujiyasu J.; Kageyama M.; Uemura T.; Takasaki J. WO 2007105751, 2007.
[9]
(j) Wu L.; Zhan Z.; Qian Y.; Wang J.; Chen S. WO 2021058024, 2021.
[10]
Chambers R. D.; O’Hagan D.; Lamont R. B.; Jain S. C. J. Chem. Soc., Chem. Commun. 1990, 1053.
[11]
(a) Xu Y.; Aoki J.; Shimizu K.; Umezu-Goto M.; Hama K.; Takanezawa Y.; Yu S.; Mills G. B.; Arai H.; Qian L.; Prestwich G. D. J. Med. Chem. 2005, 48, 3319.
[11]
(b) Wang J.; Fei X.; Gardner T. A.; Hutchins G. D.; Zheng Q. Bioorg. Med. Chem. 2005, 13, 549.
[12]
(a) Behr J.-B.; Evina C.; Phung N.; Guillerm G. J. Chem. Soc., Perkin Trans. 1 1997, 1597.
[12]
(b) Cocaud C.; Nicolas C.; Poisson T.; Pannecoucke X.; Legault C. Y.; Martin O. R. J. Org. Chem. 2017, 82, 2753.
[13]
(a) R?schenthaler G.-V.; Kukhar V.; Barten J.; Gvozdovska N.; Belik M.; Sorochinsky A. Tetrahedron Lett. 2004, 45, 6665.
[13]
(b) R?schenthaler G.-V.; Kukhar V. P.; Belik M. Y.; Mazurenko K. I.; Sorochinsky A. E. Tetrahedron 2006, 62, 9902.
[14]
Cherkupally P.; Beier P. J. Fluorine Chem. 2012, 141, 76.
[15]
Henry-dit-Quesnel A.; Toupet L.; Pommelet J.-C.; Lequeux T. Org. Biomol. Chem. 2003, 1, 2486.
[16]
Van Tran T.; Désiré J.; Auberger N.; Blériot Y. J. Org. Chem. 2022, 87, 7581.
[17]
Kosobokov M. D.; Dilman A. D.; Struchkova M. I.; Belyakov P. A.; Hu J. J. Org. Chem. 2012, 77, 2080.
[18]
Das M.; O’Shea D. F. Chem.-Eur. J. 2015, 21, 18717.
[19]
Chen Q.; Zhou J.; Wang Y.; Wang C.; Liu X.; Xu Z.; Lin L.; Wang R. Org. Lett. 2015, 17, 4212.
[20]
Xie C.; Zhang L.; Mei H.; Pajkert R.; Ponomarenko M.; Pan Y.; R?schenthaler G.-V.; Soloshonok V. A.; Han J. Chem.-Eur. J. 2016, 22, 7036.
[21]
(a) Rapp M.; Szewczyk M. Z.; Koroniak H. J. Fluorine Chem. 2014, 167, 152.
[21]
(b) Szewczyk M. Z.; Rapp M.; Virieux D.; Pirat J.-L.; Koroniak H. New J. Chem. 2017, 41, 6322.
[22]
Xie J.; Zhang T.; Chen F.; Mehrkens N.; Rominger F.; Rudolph M.; Hashmi A. S. K. Angew. Chem., Int. Ed. 2016, 55, 2934.
[23]
Obayashi M.; Kondo K. Tetrahedron Lett. 1982, 23, 2327.
[24]
(a) Waschbüsch R.; Samadi M.; Savignac P. A. J. Organomet. Chem. 1997, 529, 267.
[24]
(b) Alexandrova A. V.; Beier P. J. Fluorine Chem. 2009, 130, 493.
[25]
Czerwiński P. J.; Furman B. Chem. Commun. 2019, 55, 9436.
[26]
(a) Escorihuela J.; Fustero S. Chem. Rec. 2023, 23, e202200262.
[26]
(b) Bégué J. P.; Bonnet-Delpon D.; Crousse B.; Legros J. Chem. Soc. Rev. 2005, 34, 562.
[26]
(c) Mei H.; Han J.; Fustero S.; Román R.; Ruzziconi R.; Soloshonok V. A. J. Fluorine Chem. 2018, 216, 57.
[27]
Dilman A. D.; Levin V. V. Eur. J. Org. Chem. 2011, 2011, 831.
[28]
(a) Froidevaux V.; Negrell C.; Caillol S.; Pascault J. P.; Boutevin B. Chem. Rev. 2016, 116, 14181.
[28]
(b) Pelckmans M.; Renders T.; Van de Vyver S.; Sels B. F. Green Chem. 2017, 19, 5303.
[28]
(c) Cabré A.; Verdaguer X.; Riera A. Chem. Rev. 2022, 122, 269.
[28]
(d) Compain P. Adv. Synth. Catal. 2007, 349, 1829.
[28]
(e) Yin Q.; Shi Y.; Wang J.; Zhang X. Chem. Soc. Rev. 2020, 49, 6141.
[28]
(f) Trowbridge A.; Walton S. M.; Gaunt M. J. Chem. Rev. 2020, 120, 2613.
[29]
((a) Serafini M.; Cargnin S.; Massarotti A.; Pirali T.; Genazzani A. A. J. Med. Chem. 2020, 63, 10170.
[30]
(a) Nagaraaj P.; Vijayakumara V. Org. Chem. Front. 2019, 6, 2570.
[30]
(b) Berger K. J.; Levin M. D. Org. Biomol. Chem. 2021, 19, 11.
[30]
(c) Yamamoto Y.; Kodama S.; Nomotoa A.; Ogawa A. Org. Biomol. Chem. 2022, 20, 9503.
[31]
Shevchuk M. V.; Sorochinsky A. E.; Khilya V. P.; Romanenko V. D.; Kukhar V. P. Synlett 2010, 73.
[32]
(a) Li P.; Jia X. Synthesis 2018, 50, 711.
[32]
(b) Dahiya A.; Sahoo A. K.; Alam T.; Patel B. K. Chem.-Asian J. 2019, 14, 4454.
[33]
(a) Ciszewski ?. W.; Rybicka-Jasińska K.; Gryko D. Org. Biomol. Chem. 2019, 17, 432.
[33]
(b) Xiao Q.; Zhang Y.; Wang J. Acc. Chem. Res. 2013, 46, 236.
[33]
(c) Fulton J. R.; Aggarwal V. K.; de Vicente J. Eur. J. Org. Chem. 2005, 2005, 1479.
[33]
(d) Maas G. Angew. Chem., Int. Ed. 2009, 48, 8186.
[33]
(e) Candeias N. R.; Paterna R.; Gois P. M. P. Chem. Rev. 2016, 116, 2937.
[34]
Mix K. A.; Aronoff M. R.; Raines R. T. ACS Chem. Biol. 2016, 11, 3233.
[35]
(a) Mertens L.; Koenigs R. M. Org. Biomol. Chem. 2016, 14, 10547.
[35]
(b) Sivaguru P.; Bi X. Sci. China: Chem. 2021, 64, 1614.
[35]
(c) Hock K. J.; Mertens L.; Metze F. K.; Schmittmann C.; Koenigs R. M. Green Chem. 2017, 19, 905.
[36]
Mei H.; Liu J.; Pajkert R.; Wang L.; R?schenthaler G. V.; Han J. Org. Chem. Front. 2021, 8, 767.
[37]
Liu J.; Xu J.; Pajkert R.; Mei H.; R?schenthaler G. V.; Han J. Acta Chim. Sinica 2021, 79, 747 (in Chinese).
[37]
(刘江, 徐敬成, Romana Pajkert, 梅海波, Gerd-Volker R?schenthaler, 韩建林, 化学学报, 2021, 79, 747.)
[38]
Li Z.; Yao X.; Zhang X.; Mei H.; Han J. J. Org. Chem. 2022, 87, 15483.
[39]
Mei H.; Wang L.; Pajkert R.; Wang Q.; Xu J.; Liu J.; R?schenthaler G. V.; Han J. Org. Lett. 2021, 23, 1130.
[40]
Wang Q.; Wang L.; Pajkert R.; Hajdin I.; Mei H.; R?schenthaler G. V.; Han J. J. Fluorine Chem. 2021, 251, 109899.
[41]
Zhai S. J.; Cahard D.; Zhang F. G.; Ma J. A. Chin. Chem. Lett. 2022, 33, 863.
[42]
(a) Khanal H. D.; Thombal R. S.; Maezono S. M. B.; Lee Y. R. Adv. Synth. Catal. 2018, 360, 3185.
[42]
(b) Schnaars C.; Hennum M.; Bonge-Hansen T. J. Org. Chem. 2013, 78, 7488.
[43]
Liu J.; Pajkert R.; Wang L.; Mei H.; R?schenthaler G. V.; Han J. Chin. Chem. Lett. 2022, 33, 2429.
[44]
Lu Y.; Huang C.; Liu C.; Guo Y.; Chen Q. Y. Eur. J. Org. Chem. 2018, 2018, 2082.
[45]
Zhang F. G.; Lv N.; Zheng Y.; Ma J. A. Chin. J. Chem. 2018, 36, 723.
[46]
Zhang F. G.; Zeng J. L.; Tian Y. Q.; Zheng Y.; Cahard D.; Ma J. A. Chem.-Eur. J. 2018, 24, 7749.
[47]
Wang Q.; Liu J.; Wang N.; Pajkert R.; Mei H.; R?schenthaler G. V.; Han J. Adv. Synth. Catal. 2022, 364, 1969.
[48]
Wang Q.; Pajkert R.; Mei H.; R?schenthaler G. V.; Han J. J. Fluorine Chem. 2024, 273, 110226.
[49]
Wang Q.; Liu J.; Mei H.; Pajkert R.; R?schenthaler G. V.; Han J. Adv. Synth. Catal. 2023, 365, 2883.
[50]
Zhang X.; Zhang X.; Song Q.; Sivaguru P.; Wang Z.; Zanoni G. Bi X. Angew. Chem., Int. Ed. 2022, 61, e202116190.
[51]
Wang Q.; Liu J.; Mei H.; Pajkert R.; Kessler M.; R?schenthaler G. V.; Han J. Org. Lett. 2022, 24, 8036.
文章导航

/