有机化学 ›› 2024, Vol. 44 ›› Issue (12): 3686-3701.DOI: 10.6023/cjoc202405013 上一篇 下一篇
综述与进展
杜友龙a, 王倩a, 梅海波a, Romana Pajkertb,*(), Gerd-Volker Röschenthalerb,*(), 韩建林a,*()
收稿日期:
2024-05-13
修回日期:
2024-06-22
发布日期:
2024-07-17
基金资助:
Youlong Dua, Qian Wanga, Haibo Meia, Romana Pajkertb,*(), Gerd-Volker Röschenthalerb,*(), Jianlin Hana,*()
Received:
2024-05-13
Revised:
2024-06-22
Published:
2024-07-17
Contact:
*E-mail:Supported by:
文章分享
α,α-二氟-β-氨基膦酸酯因含有一个氨基基团, 可以作为氨基酸的类似物, 在生物化学领域引起了广泛的研究兴趣. 更重要的是, 这类化合物还是非常高效的有机合成中间体, 其在二氟膦酸酯衍生物的合成方面有非常重要的应用. 因此, α,α-二氟-β-氨基膦酸酯的合成和应用是磷化学领域的研究热点. 系统全面地总结了近些年有关α,α-二氟-β-氨基膦酸酯的研究进展, 讨论了α,α-二氟-β-氨基膦酸酯的合成及其相关的反应, 以期为二氟膦酸酯衍生物的合成研究提供一定的参考.
杜友龙, 王倩, 梅海波, Romana Pajkert, Gerd-Volker Röschenthaler, 韩建林. α,α-二氟-β-氨基膦酸酯的合成与应用研究进展[J]. 有机化学, 2024, 44(12): 3686-3701.
Youlong Du, Qian Wang, Haibo Mei, Romana Pajkert, Gerd-Volker Röschenthaler, Jianlin Han. Recent Advances on the Synthesis and Application of α,α-Difluoro-β-aminophosphonates[J]. Chinese Journal of Organic Chemistry, 2024, 44(12): 3686-3701.
[1] |
(a) Kukhar V. P.; Hudson H. R. Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity, Wiley, Chichester, UK, 2000.
pmid: 19229586 |
(b) Kafarski P.; Lejczak B. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 63, 193.
pmid: 19229586 |
|
(c) Naydenova E. D.; Todorov P. T.; Troev K. D. Amino Acids 2010, 38, 23.
doi: 10.1007/s00726-009-0254-7 pmid: 19229586 |
|
(d) Galezowska J.; Gumienna-Kontecka E. Coord. Chem. Rev. 2012, 256, 105.
pmid: 19229586 |
|
(e) Mucha A.; Kafarski P.; Berlicki Ł. J. Med. Chem. 2011, 54, 5955.
pmid: 19229586 |
|
[2] |
(a) Palacios F.; Alonso C.; Santos J. M. Chem. Rev. 2005, 105, 899.
|
(b) Ma J. A. Chem. Soc. Rev. 2006, 35, 630.
|
|
(c) Cao H. Q.; Li J. K.; Zhang F. G.; Cahard D.; Ma J. A. Adv. Synth. Caltal. 2021, 363, 688.
|
|
[3] |
Kudzin Z. H.; Kudzin M. H.; Drabowicz J.; Stevens V. C. Curr. Org. Chem. 2011, 15, 2015.
|
[4] |
(a) Wardle N. J.; Bligh S. W.; Hudson H. R. Curr. Org. Chem. 2007, 11, 1635.
|
(b) Ordonez M.; Rojas-Cabrera H.; Cativiela C. Tetrahedron 2009, 65, 17.
|
|
(c) Soloshonok V. A.; Belokon Y. N. N.; Kuzmina A.; Maleev V. I.; Svistunova N. Y.; Solodenko V. A.; Kukhar V. P. J. Chem. Soc., Perkin Trans. 1 1992, 1525.
|
|
[5] |
(a) Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009.
|
(b) Uneyama K. Organofluorine Chemistry, Blackwell Publishing Ltd, Oxford, 2006.
|
|
(c) Wang Q.; Bian Y.; Dhawan G.; Zhang W.; Sorochinsky A. E.; Makarem A.; Soloshonok V.; Han J. Chin. Chem. Lett. 2024, 35, 109780.
|
|
(d) He J.; Li Z.; Dhawan G.; Zhang W.; Sorochinsky A. E.; Butler G.; Soloshonok V. A.; Han J. Chin. Chem. Lett. 2023, 34, 107578.
|
|
(e) Hagmann W. K. J. Med. Chem. 2008, 51, 4359.
|
|
(f) Yu Y.; Liu A.; Dhawan G.; Mei H.; Zhang W.; Izawa K.; Soloshonok V. A.; Han J. Chin. Chem. Lett. 2021, 32, 3342.
|
|
[6] |
O’Hagan D.; Rzepa H. S. Chem. Commun. 1997, 645.
|
[7] |
(a) Turcheniuk K. V.; Kukhar V. P.; Röschenthaler G. V.; Aceña J. L.; Soloshonok V. A.; Sorochinsky A. E. RSC Adv. 2013, 3, 6693.
|
(b) Makhaeva G. F.; Aksinenko A. Y.; Sokolov V. B.; Baskin I. I.; Palyulin V. A.; Zefirov N. S.; Hein N. D.; Kampf J. W.; Wijeye- sakere S. J.; Richardson R. J. Chem. Biol. Interact. 2010, 187, 177.
|
|
(c) Cytlak T.; Kaźmierczak M.; Skibińska M.; Koroniak H. Phosphorus, Sulfur Silicon Relat. Elem. 2017, 192, 602.
|
|
[8] |
(a) Shevchuk M.; Wang Q.; Pajkert R.; Xu J.; Mei H.; Röschenthaler G.-V.; Han J. Adv. Synth. Catal. 2021, 363, 2912.
pmid: 16967924 |
(b) Romanenko V. D.; Kukhar V. P. Chem. Rev. 2006, 106, 3868.
pmid: 16967924 |
|
[9] |
(a) Burke T.; Smyth M.; Otaka A.; Nomizu M.; Roller P.; Wolf G.; Case R.; Shoelson S. Biochemistry 1994, 33, 6490.
pmid: 10888338 |
(b) Chen L.; Wu L.; Otaka A.; Smyth M.; Roller P.; Burke T.; Hertog J.; Zhang Z. Biochem. Biophys. Res. Commun. 1995, 216, 976.
pmid: 10888338 |
|
(c) Chen H.; Cong L.; Li Y.; Yao Z.; Wu L.; Zhang Z.; Burke T.; Quon M. Biochemistry 1999, 38, 384.
pmid: 10888338 |
|
(d) Higashimoto Y.; Saito S.; Tong X.; Hong A.; Sakaguchi K.; Appela E.; Anderson C. J. Biol. Chem. 2000, 275, 23199.
doi: 10.1074/jbc.M002674200 pmid: 10888338 |
|
(e) Yokomatsu T.; Murano T.; Akiyama T.; Koizumi J.; Shibuya S.; Tsuji Y.; Soeda S.; Shimeno H. Bioorg. Med. Chem. Lett. 2003, 13, 229.
pmid: 10888338 |
|
(f) Gautier-Lefebvre I.; Behr J.-B.; Guillerm G.; Ryder N. Bioorg. Med. Chem. Lett. 2000, 10, 1483.
pmid: 10888338 |
|
(g) Pfund E.; Lequeux T.; Masson S.; Vazeux M.; Cordi A.; Pierre A.; Serre V.; Hervé G. Bioorg. Med. Chem. 2005, 13, 4921.
pmid: 10888338 |
|
(h) Hakogi T.; Yamamoto T.; Fujii S.; Ikeda K.; Katsumura S. Tetrahedron Lett. 2006, 47, 2627.
pmid: 10888338 |
|
(i) Koga Y.; Okuda T.; Watanuki S.; Kamikubo T.; Hirayama F.; Moritomo H.; Fujiyasu J.; Kageyama M.; Uemura T.; Takasaki J. WO 2007105751, 2007.
pmid: 10888338 |
|
(j) Wu L.; Zhan Z.; Qian Y.; Wang J.; Chen S. WO 2021058024, 2021.
pmid: 10888338 |
|
[10] |
Chambers R. D.; O’Hagan D.; Lamont R. B.; Jain S. C. J. Chem. Soc., Chem. Commun. 1990, 1053.
|
[11] |
(a) Xu Y.; Aoki J.; Shimizu K.; Umezu-Goto M.; Hama K.; Takanezawa Y.; Yu S.; Mills G. B.; Arai H.; Qian L.; Prestwich G. D. J. Med. Chem. 2005, 48, 3319.
|
(b) Wang J.; Fei X.; Gardner T. A.; Hutchins G. D.; Zheng Q. Bioorg. Med. Chem. 2005, 13, 549.
|
|
[12] |
(a) Behr J.-B.; Evina C.; Phung N.; Guillerm G. J. Chem. Soc., Perkin Trans. 1 1997, 1597.
pmid: 28221798 |
(b) Cocaud C.; Nicolas C.; Poisson T.; Pannecoucke X.; Legault C. Y.; Martin O. R. J. Org. Chem. 2017, 82, 2753.
doi: 10.1021/acs.joc.6b03071 pmid: 28221798 |
|
[13] |
(a) Röschenthaler G.-V.; Kukhar V.; Barten J.; Gvozdovska N.; Belik M.; Sorochinsky A. Tetrahedron Lett. 2004, 45, 6665.
|
(b) Röschenthaler G.-V.; Kukhar V. P.; Belik M. Y.; Mazurenko K. I.; Sorochinsky A. E. Tetrahedron 2006, 62, 9902.
|
|
[14] |
Cherkupally P.; Beier P. J. Fluorine Chem. 2012, 141, 76.
|
[15] |
Henry-dit-Quesnel A.; Toupet L.; Pommelet J.-C.; Lequeux T. Org. Biomol. Chem. 2003, 1, 2486.
pmid: 12956065 |
[16] |
Van Tran T.; Désiré J.; Auberger N.; Blériot Y. J. Org. Chem. 2022, 87, 7581.
|
[17] |
Kosobokov M. D.; Dilman A. D.; Struchkova M. I.; Belyakov P. A.; Hu J. J. Org. Chem. 2012, 77, 2080.
doi: 10.1021/jo202669w pmid: 22283481 |
[18] |
Das M.; O’Shea D. F. Chem.-Eur. J. 2015, 21, 18717.
|
[19] |
Chen Q.; Zhou J.; Wang Y.; Wang C.; Liu X.; Xu Z.; Lin L.; Wang R. Org. Lett. 2015, 17, 4212.
|
[20] |
Xie C.; Zhang L.; Mei H.; Pajkert R.; Ponomarenko M.; Pan Y.; Röschenthaler G.-V.; Soloshonok V. A.; Han J. Chem.-Eur. J. 2016, 22, 7036.
|
[21] |
(a) Rapp M.; Szewczyk M. Z.; Koroniak H. J. Fluorine Chem. 2014, 167, 152.
|
(b) Szewczyk M. Z.; Rapp M.; Virieux D.; Pirat J.-L.; Koroniak H. New J. Chem. 2017, 41, 6322.
|
|
[22] |
Xie J.; Zhang T.; Chen F.; Mehrkens N.; Rominger F.; Rudolph M.; Hashmi A. S. K. Angew. Chem., Int. Ed. 2016, 55, 2934.
|
[23] |
Obayashi M.; Kondo K. Tetrahedron Lett. 1982, 23, 2327.
|
[24] |
(a) Waschbüsch R.; Samadi M.; Savignac P. A. J. Organomet. Chem. 1997, 529, 267.
|
(b) Alexandrova A. V.; Beier P. J. Fluorine Chem. 2009, 130, 493.
|
|
[25] |
Czerwiński P. J.; Furman B. Chem. Commun. 2019, 55, 9436.
|
[26] |
(a) Escorihuela J.; Fustero S. Chem. Rec. 2023, 23, e202200262.
|
(b) Bégué J. P.; Bonnet-Delpon D.; Crousse B.; Legros J. Chem. Soc. Rev. 2005, 34, 562.
|
|
(c) Mei H.; Han J.; Fustero S.; Román R.; Ruzziconi R.; Soloshonok V. A. J. Fluorine Chem. 2018, 216, 57.
|
|
[27] |
Dilman A. D.; Levin V. V. Eur. J. Org. Chem. 2011, 2011, 831.
|
[28] |
(a) Froidevaux V.; Negrell C.; Caillol S.; Pascault J. P.; Boutevin B. Chem. Rev. 2016, 116, 14181.
pmid: 32064858 |
(b) Pelckmans M.; Renders T.; Van de Vyver S.; Sels B. F. Green Chem. 2017, 19, 5303.
pmid: 32064858 |
|
(c) Cabré A.; Verdaguer X.; Riera A. Chem. Rev. 2022, 122, 269.
pmid: 32064858 |
|
(d) Compain P. Adv. Synth. Catal. 2007, 349, 1829.
pmid: 32064858 |
|
(e) Yin Q.; Shi Y.; Wang J.; Zhang X. Chem. Soc. Rev. 2020, 49, 6141.
pmid: 32064858 |
|
(f) Trowbridge A.; Walton S. M.; Gaunt M. J. Chem. Rev. 2020, 120, 2613.
doi: 10.1021/acs.chemrev.9b00462 pmid: 32064858 |
|
[29] |
((a) Serafini M.; Cargnin S.; Massarotti A.; Pirali T.; Genazzani A. A. J. Med. Chem. 2020, 63, 10170.
doi: 10.1021/acs.jmedchem.0c00415 pmid: 32352778 |
[30] |
(a) Nagaraaj P.; Vijayakumara V. Org. Chem. Front. 2019, 6, 2570.
doi: 10.1039/c9qo00387h pmid: 36218331 |
(b) Berger K. J.; Levin M. D. Org. Biomol. Chem. 2021, 19, 11.
pmid: 36218331 |
|
(c) Yamamoto Y.; Kodama S.; Nomotoa A.; Ogawa A. Org. Biomol. Chem. 2022, 20, 9503.
doi: 10.1039/d2ob01421a pmid: 36218331 |
|
[31] |
Shevchuk M. V.; Sorochinsky A. E.; Khilya V. P.; Romanenko V. D.; Kukhar V. P. Synlett 2010, 73.
|
[32] |
(a) Li P.; Jia X. Synthesis 2018, 50, 711.
|
(b) Dahiya A.; Sahoo A. K.; Alam T.; Patel B. K. Chem.-Asian J. 2019, 14, 4454.
|
|
[33] |
(a) Ciszewski Ł. W.; Rybicka-Jasińska K.; Gryko D. Org. Biomol. Chem. 2019, 17, 432.
doi: 10.1039/c8ob02703j pmid: 26854865 |
(b) Xiao Q.; Zhang Y.; Wang J. Acc. Chem. Res. 2013, 46, 236.
pmid: 26854865 |
|
(c) Fulton J. R.; Aggarwal V. K.; de Vicente J. Eur. J. Org. Chem. 2005, 2005, 1479.
pmid: 26854865 |
|
(d) Maas G. Angew. Chem., Int. Ed. 2009, 48, 8186.
pmid: 26854865 |
|
(e) Candeias N. R.; Paterna R.; Gois P. M. P. Chem. Rev. 2016, 116, 2937.
doi: 10.1021/acs.chemrev.5b00381 pmid: 26854865 |
|
[34] |
Mix K. A.; Aronoff M. R.; Raines R. T. ACS Chem. Biol. 2016, 11, 3233.
|
[35] |
(a) Mertens L.; Koenigs R. M. Org. Biomol. Chem. 2016, 14, 10547.
pmid: 27722720 |
(b) Sivaguru P.; Bi X. Sci. China: Chem. 2021, 64, 1614.
pmid: 27722720 |
|
(c) Hock K. J.; Mertens L.; Metze F. K.; Schmittmann C.; Koenigs R. M. Green Chem. 2017, 19, 905.
pmid: 27722720 |
|
[36] |
Mei H.; Liu J.; Pajkert R.; Wang L.; Röschenthaler G. V.; Han J. Org. Chem. Front. 2021, 8, 767.
|
[37] |
Liu J.; Xu J.; Pajkert R.; Mei H.; Röschenthaler G. V.; Han J. Acta Chim. Sinica 2021, 79, 747 (in Chinese).
|
(刘江, 徐敬成, Romana Pajkert, 梅海波, Gerd-Volker Röschenthaler, 韩建林, 化学学报, 2021, 79, 747.)
doi: 10.6023/A21030096 |
|
[38] |
Li Z.; Yao X.; Zhang X.; Mei H.; Han J. J. Org. Chem. 2022, 87, 15483.
|
[39] |
Mei H.; Wang L.; Pajkert R.; Wang Q.; Xu J.; Liu J.; Röschenthaler G. V.; Han J. Org. Lett. 2021, 23, 1130.
|
[40] |
Wang Q.; Wang L.; Pajkert R.; Hajdin I.; Mei H.; Röschenthaler G. V.; Han J. J. Fluorine Chem. 2021, 251, 109899.
|
[41] |
Zhai S. J.; Cahard D.; Zhang F. G.; Ma J. A. Chin. Chem. Lett. 2022, 33, 863.
|
[42] |
(a) Khanal H. D.; Thombal R. S.; Maezono S. M. B.; Lee Y. R. Adv. Synth. Catal. 2018, 360, 3185.
|
(b) Schnaars C.; Hennum M.; Bonge-Hansen T. J. Org. Chem. 2013, 78, 7488.
|
|
[43] |
Liu J.; Pajkert R.; Wang L.; Mei H.; Röschenthaler G. V.; Han J. Chin. Chem. Lett. 2022, 33, 2429.
|
[44] |
Lu Y.; Huang C.; Liu C.; Guo Y.; Chen Q. Y. Eur. J. Org. Chem. 2018, 2018, 2082.
|
[45] |
Zhang F. G.; Lv N.; Zheng Y.; Ma J. A. Chin. J. Chem. 2018, 36, 723.
|
[46] |
Zhang F. G.; Zeng J. L.; Tian Y. Q.; Zheng Y.; Cahard D.; Ma J. A. Chem.-Eur. J. 2018, 24, 7749.
|
[47] |
Wang Q.; Liu J.; Wang N.; Pajkert R.; Mei H.; Röschenthaler G. V.; Han J. Adv. Synth. Catal. 2022, 364, 1969.
|
[48] |
Wang Q.; Pajkert R.; Mei H.; Röschenthaler G. V.; Han J. J. Fluorine Chem. 2024, 273, 110226.
|
[49] |
Wang Q.; Liu J.; Mei H.; Pajkert R.; Röschenthaler G. V.; Han J. Adv. Synth. Catal. 2023, 365, 2883.
|
[50] |
Zhang X.; Zhang X.; Song Q.; Sivaguru P.; Wang Z.; Zanoni G. Bi X. Angew. Chem., Int. Ed. 2022, 61, e202116190.
|
[51] |
Wang Q.; Liu J.; Mei H.; Pajkert R.; Kessler M.; Röschenthaler G. V.; Han J. Org. Lett. 2022, 24, 8036.
|
[1] | 陈璐怡, 谭梦霞, 金迦南, 张子彬, 黄飞鹤, 李世军, 李云霞. 手性亚胺有机分子笼的合成及应用研究[J]. 有机化学, 2024, 44(9): 2617-2639. |
[2] | 叶丹锋, 徐冰, 万云辉. 叔丁醇锂催化N-苄基-N-叔丁氧羰基酰胺与糖的酯化反应[J]. 有机化学, 2024, 44(9): 2924-2932. |
[3] | 徐小波, 于晓, 夏成才, 冀亚飞. 实用的化学选择性芳香取代: N-苯基苯磺酰胺的高效双硝基化合成N-(2,4-二硝基苯基)苯磺酰胺[J]. 有机化学, 2024, 44(9): 2915-2923. |
[4] | 蒋镓西, 刘全忠. 乙烯基重氮化合物非金属卡宾机制参与的反应[J]. 有机化学, 2024, 44(9): 2640-2657. |
[5] | 王华斌, 徐连华, 刘雄伟, 潘博文, 姚震, 黄强, 周英. N-溴代丁二酰亚胺促进的P(O)-H化合物参与的醇的直接磷酸化反应[J]. 有机化学, 2024, 44(9): 2847-2853. |
[6] | 高宇珅, 高媛媛, 张安安, 李路, 耿巍芝, 张凤华, 李飞, 刘澜涛. BF3•OEt2介导2-炔基苯胺的分子内环化反应合成3-硫醚吲哚化合物[J]. 有机化学, 2024, 44(9): 2785-2795. |
[7] | 张瑞, 何萌萌, 向焌钧, 蔡莎莉, 葛从伍, 高希珂. 核扩展的萘二酰亚胺-插烯四硫富瓦烯类双极性有机半导体[J]. 有机化学, 2024, 44(9): 2810-2819. |
[8] | 欧彦, 蓝琳, 王正雄, 王志明, 唐本忠. 聚集诱导发光型核酸探针的制备及其核酸传感原理研究[J]. 有机化学, 2024, 44(8): 2554-2562. |
[9] | 温梦柯, 李宜越, 杜浩康, 陈章培, 杨西发. 铑催化3-芳基-2H-1,4-苯并噁嗪与重氮萘-2H-酮的[3+3]环化合成螺吡喃化合物[J]. 有机化学, 2024, 44(7): 2223-2232. |
[10] | 丁柔, 石思雨, 马超, 魏伟, 吕玉芬. 非金属1,8-二氮杂双环[5.4.0]十一碳-7-烯介导下乙缩醛酸与异硫氰酸酯反应合成α-缩醛基酰胺[J]. 有机化学, 2024, 44(7): 2216-2222. |
[11] | 赵明, 颜瑞, 陈虎. 氮杂环卡宾催化醛类化合物的极性反转[J]. 有机化学, 2024, 44(7): 2204-2215. |
[12] | 曹茜娴, 由君, 刘其业, 刘波, 喻艳超, 武文菊. (4S,4'S)-2,2'-(4,6-二苯并呋喃二基)双[4,5-二氢-4-苯基噁唑]-镍(II)配合物催化高对映选择性氰亚胺的环加成反应[J]. 有机化学, 2024, 44(7): 2315-2332. |
[13] | 胡懿鸣, 许嘉宇, 汤敏, 刘雅雯, 关丽萍, 金晴昊. 2-(1,3-二氧代异吲哚啉-2-基)-N-苯乙酰胺和2-(3,4-二氢异喹啉-1-基)异吲哚-1,3-二酮类单胺氧化酶(MAO)和胆碱酯酶(ChE)抑制剂的设计、合成和生物活性研究[J]. 有机化学, 2024, 44(6): 1907-1919. |
[14] | 李令东, 张维伦, 刘鹏飞, 周子杰, 周豪, 杜中田. 双子季铵盐氯胺的合成及抗菌应用[J]. 有机化学, 2024, 44(6): 2041-2048. |
[15] | 王家晟, 王泽树, 何卫民, 叶龙武. 邻炔基苯胺氢胺化合成轴手性吲哚研究进展[J]. 有机化学, 2024, 44(6): 1786-1792. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||