综述与进展

有机膦催化合成中环化合物的研究进展

  • 潘旭玲 ,
  • 黄有
展开
  • 南开大学化学学院 元素有机化学国家重点实验室 天津 300071

收稿日期: 2024-05-15

  修回日期: 2024-06-15

  网络出版日期: 2024-07-18

基金资助

国家自然科学基金(22171147); 国家自然科学基金(21871148)

Progress in Synthesis of Medium-Sized Ring Compounds Catalyzed by Organophosphine

  • Xuling Pan ,
  • You Huang
Expand
  • State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071
*Corresponding authors. E-mail:

Received date: 2024-05-15

  Revised date: 2024-06-15

  Online published: 2024-07-18

Supported by

National Natural Science Foundation of China(22171147); National Natural Science Foundation of China(21871148)

摘要

中环(7~11元环)是一类重要的有机分子骨架, 广泛存在于药物、农药以及许多具有生物活性的天然产物中, 在有机合成化学中占有重要地位. 有机小分子催化反应是合成中环化合物的重要方法之一, 其中, 有机膦催化具有成本低廉、环境友好以及催化剂易于回收利用等优点, 为中环化合物的合成提供了一条经济而高效的途径. 因此, 近几十年来, 该研究领域受到了持续而广泛的关注. 本综述将对有机膦催化合成中环化合物的研究进展进行总结, 详细阐述不同反应底物类型、反应机理等.

本文引用格式

潘旭玲 , 黄有 . 有机膦催化合成中环化合物的研究进展[J]. 有机化学, 2024 , 44(12) : 3609 -3620 . DOI: 10.6023/cjoc202405021

Abstract

Medium-sized rings (7~11 membered ring) are a class of important skeleton in organic molecules, which are commonly found in drugs, pesticides and many biologically active natural products, and play essential roles in organic synthetic chemistry. Organo-catalysis is an important methodology for the synthesis of medium-sized ring compounds, among which, organophosphine catalysis has the advantages of low cost, environmental friendliness, and easy recycling, which provides an economical and efficient route for the synthesis of medium-sized ring compounds. Therefore, this field of research has received continuous and extensive attention in recent decades. In this review, the research progress on the organophosphine-catalyzed synthesis of medium-sized ring compounds is summarized, detailing the different types of reaction substrates, reaction mechanisms, etc.

参考文献

[1]
Harvey A. L. Drug Discovery Today 2008, 13, 894.
[2]
Li J. W.; Vederas J. C. Science 2009, 325, 161.
[3]
Rosen J.; Gottfries J.; Muresan S.; Backlund A.; Oprea T. I. J. Med. Chem. 2009, 52, 1953.
[4]
Morrison K. C.; Hergenrothèr P. J. Nat. Prod. Rep. 2014, 31, 6.
[5]
Atanasov A. G.; Zotchev S. B.; Dirsch V. M.; International Natural Product Sciences Taskforce; Supuran C. T. Nat. Rev. Drug Discovery 2021, 20, 200.
[6]
Hendrickson J. B.; Molecular geometry. V. J. Am. Chem. Soc. 1967, 89, 7036.
[7]
Anet F. A. L.; Krane J. Tetrahedron Lett. 1973, 14, 5029.
[8]
Toromanoff E. Tetrahedron 1980, 36, 2809.
[9]
Illuminati G.; Mandolini L. Acc. Chem. Res. 1981, 14, 95.
[10]
Saunders M. J. Comput. Chem. 1991, 12, 645.
[11]
Galli C.; Mandolini L. Eur. J. Org. Chem. 2000, 2000, 3117.
[12]
Yet L. Chem. Rev. 2000, 100, 2963.
[13]
lluminati G.; Mandolini L. Acc. Chem. Res. 1981, 14, 95.
[14]
Allinger N. L.; Tribble M. T.; Miller M. A.; Wertz D. H. J. Am. Chem. Soc. 1971, 93, 1637.
[15]
Maier W. F.; Schleyer P. V. R. J. Am. Chem. Soc. 1981, 103, 1891.
[16]
Zhang C.; Lu X. J. Org. Chem. 1995, 60, 2906
[17]
Xu Z.; Lu X. Tetrahedron Lett. 1997, 38, 3461.
[18]
Guo H.; Fan Y.; Sun Z.; Wu Y.; Kwon O. Chem. Rev. 2018, 118, 10049.
[19]
Ni H., Chan W.-L.; Lu Y. Chem. Rev. 2018, 118, 9344.
[20]
Wang Z.; Xu X.; Kwon O. Chem. Soc. Rev. 2014, 43, 2927.
[21]
Gao Y.-N.; Shi M. Chin. Chem. Lett. 2017, 28, 493.
[22]
Huang Y.; Liao J.; Wang W.; Liu H.; Guo H. Chem. Commun. 2020, 56, 15235.
[23]
Fan Y.; Kwon O. Chem. Commun. 2013, 49, 11588.
[24]
Wang T.; Han X.; Zhong F.; Yao W.; Lu Y. Acc. Chem. Res. 2016, 49, 1369.
[25]
Xie C.; Smaligo A. J.; Song X.-R.; Kwon O. ACS Cent. Sci. 2021, 7, 536.
[26]
Kumar K.; Kapur A.; Ishar M. P. Org. Lett. 2000, 2, 787.
[27]
Kumar K.; Kapoor R.; Kapur A.; Ishar M. P. S. Org. Lett. 2000, 2, 2023.
[28]
Zheng S.; Lu X. Org. Lett. 2009, 11, 3978.
[29]
Na R.; Jing C.; Xu Q.; Jiang H.; Wu X.; Shi J.; Zhong J.; Wang M.; Benitez D.; Tkatchouk E.; Goddard W. A.; Guo H.; Kwon O. J. Am. Chem. Soc. 2011, 133, 13337.
[30]
Meng W.; Zhao H.-T.; Nie J.; Zheng Y.; Fu A.; Ma J.-A. Chem. Sci. 2012, 3, 3053.
[31]
Jing C.; Na R.; Wang B.; Liu H.; Zhang L.; Liu J.; Wang M.; Zhong J.; Kwon O.; Guo H. Adv. Synth. Catal. 2012, 354, 1023.
[32]
Zhao H.; Meng X.; Huang Y. Chem. Commun. 2013, 49, 10513.
[33]
Gu Y.; Hu P.; Ni C.; Tong X. J. Am. Chem. Soc. 2015, 137, 6400.
[34]
Li Z.; Yu H.; Feng Y.; Hou Z.; Zhang L.; Yang W.; Wu Y.; Xiao Y.; Guo H. RSC Adv. 2015, 5, 34481.
[35]
Yuan C.; Zhou L.; Xia M.; Sun Z.; Wang D.; Guo H. Org. Lett. 2016, 18, 5644.
[36]
Xu H.; Zhu Y.; Guo P.; Liu C.; Shan J.; Tang M. Int. J. Quantum Chem. 2018, 118: e25626.
[37]
Ni H.; Tang X.; Zheng W.; Yao W.; Ullah N.; Lu Y. Angew. Chem., Int. Ed. 2017, 56, 14222.
[38]
Ma S.; Yu A.; Zhang L.; Meng X. J. Org. Chem. 2018, 83, 5410.
[39]
Gao Z.; Wang C.; Zhou L.; Yuan C.; Xiao Y.; Guo H. Org. Lett. 2018, 20, 4302.
[40]
Dai Z.; Zhu J.; Wang J.; Su W.; Yang F.; Zhou Q. Adv. Synth. Catal. 2019, 362, 545.
[41]
Manzano R.; Romaniega A.; Prieto L.; Díaz E.; Reyes E.; Uria U.; Carrillo L; Vicario J. L. Org. Lett. 2020, 22, 4721.
[42]
Zhu Y.; Xu Z.; Wang Y.-N. Chem. Commun. 2023, 59, 11712.
[43]
Lai J.; Huang Y. Chem. Commun. 2023, 59, 13215.
[44]
Ni C.; Liang Z.; Xu X.; Yu F.; Zhang D.; Chen C. J. Org. Chem. 2024, 89, 4784.
[45]
Du Y.; Feng J.; Lu X. Org. Lett. 2005, 7, 1987.
[46]
Zhou R.; Wang J.; Duan C.; He Z. Org. Lett. 2012, 14, 6134.
[47]
Chen J.; Huang Y. Org. Lett. 2017, 19, 5609.
[48]
Jia J.; Yu A.; Ma S.; Zhang Y.; Li K.; Meng X. Org. Lett. 2017, 19, 6084.
[49]
Zhou L.; Yuan C.; Zeng Y.; Wang Q.; Wang C.; Liu M.; Wang W.; Wu Y.; Zheng B.; Guo H. Org. Lett. 2019, 21, 4882.
[50]
Chen J.; Yin Z.; Huang Y. Org. Lett. 2019, 21, 7060.
[51]
Wang Y.; Jia S.; Li E.-Q.; Duan Z. J. Org. Chem. 2019, 84, 15323.
[52]
Jia R.-L.; Liu Q.-L.; Yang L.-W.; Deng S.; Song Y. Org. Biomol. Chem. 2021, 19, 9867.
[53]
Zhu Y.; Jiang H.; Wang Y.-N. Chin. J. Chem. 2024, 42, 271.
[54]
Wu J.; Tang Y.; Wei W.; Wu Y.; Li Y.; Zhang J.; Zheng Y.; Xu S. Angew. Chem., Int. Ed. 2018, 57, 6284.
[55]
Mato R.; Manzano R.; Reyes E.; Carrillo L.; Uria U.; Vicario J. L. J. Am. Chem. Soc. 2019, 141, 9495.
[56]
Mondal A.; Shivangi; Tung P.; Wagulde S. V.; Ramasastry S. S. V. Chem. Commun. 2021, 57, 9260
[57]
Lu C.; Lu X. Org. Lett. 2002, 4, 4677.
[58]
Yang Z.; Yu H.; Zhang L.; Wei H.; Xiao Y.; Chen L.; Guo H. Chem. Asian J. 2014, 9, 313.
[59]
Saha J.; Lorenc C.; Surana B.; Peczuh M. W. J. Org. Chem. 2012, 77, 3846.
[60]
Zhang K.; Cai L.; Hong S.; Kwon O. Org. Lett. 2019, 21, 5143.
文章导航

/